Strain insensitive flexible photodetector based on molybdenum ditelluride/molybdenum disulfide heterostructure.

Nanotechnology

State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, People's Republic of China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flexible electronic and optoelectronic devices are highly desirable for various emerging applications, such as human-computer interfaces, wearable medical electronics, flexible display, etc. Layered two-dimensional (2D) material is one of the most promising types of materials to develop flexible devices due to its atomically thin thickness, which gives it excellent flexibility and mechanical endurance. However, the 2D material devices fabricated on flexible substrate inevitably suffer from mechanical deformation, which can severely affect device performances, resulting in function degradation and even failure. In this work, we propose a strain insensitive flexible photodetector based on MoS/MoTeheterostructure on polyimide substrate, which provides a feasible approach to cancel unpredicted impacts of strain on the device performances. Specifically, the MoS/MoTeheterostructure is deposited with 4 electrodes to form three independent devices of MoSFET, MoTeFET and MoS/MoTeheterojunction. Among them, the MoS/MoTeheterojunction is used as the photodetector, while the MoSFET is used as a strain gauge to calibrate the photo detection result. Such configuration is enabled by the Schottky barrier formed between the electrodes and the MoSflake, which leads to obvious and negligible photo response of MoS/MoTeheterojunction and MoSFET, respectively, under low source-drain bias (ex. 10 mV). The experimental results show that the proposed mechanism can not only calibrate the photo response to cancel strain effect, but also successfully differentiate the wavelength (with fixed power) or power (with fixed wavelength) of light illumination.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/acb359DOI Listing

Publication Analysis

Top Keywords

strain insensitive
8
insensitive flexible
8
flexible photodetector
8
photodetector based
8
device performances
8
calibrate photo
8
photo response
8
flexible
6
strain
5
based molybdenum
4

Similar Publications

Rational assembly of 3D network materials and electronics through tensile buckling.

Sci Adv

September 2025

Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.

Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.

View Article and Find Full Text PDF

Soft conductive composites are significant components of soft and wearable electronics. Existing soft conductive composites encounter difficulties in attaining 10% of copper's electrical conductivity while maintaining high stretchability. In this work, a novel "soft conductive junction" concept is introduced to overcome the conductivity-stretchability trade-off.

View Article and Find Full Text PDF

Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy.

ACS Sens

September 2025

The State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Tactile sensing arrays play a crucial role in human-machine interaction, robotics, and artificial intelligence by enabling the perception of physical stimuli on robotic surfaces or human skin. However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically.

View Article and Find Full Text PDF

Molecular detection and phylogenetic analysis of lumpy skin disease virus in Yunnan Province, China from 2019 to 2023.

Vet Res Commun

September 2025

Animal Husbandry and Veterinary Medicine of Shidian county, Baoshan, Yunnan Province, China.

The lumpy skin disease (LSD), caused by the lumpy skin disease virus (LSDV), represents an emerging infectious disease that poses substantial economic losses to the cattle industries in China. This study aimed to investigate the epidemiological characteristics of LSDV in Yunnan Province, Southwest China, from 2019 to 2023. A Taqman-probe-based real-time PCR (qPCR) assay was developed for the molecular detection of LSDV nucleotides.

View Article and Find Full Text PDF

Intrinsically Temperature-Insensitive and Highly Sensitive Flexible Wireless Strain Sensor.

ACS Sens

September 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.

Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.

View Article and Find Full Text PDF