98%
921
2 minutes
20
Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures. A data-driven topology optimization framework enables efficient search of the optimal 2D precursor pattern that maximizes out-of-plane dimension of the resulting 3D network material. Computational and experimental results demonstrate rational assembly of optimal multilayer precursor structures into well-architected 3D network materials with an evident interlayer separation. The resulting 3D network materials offer anisotropic, tunable J-shaped stress-strain curves, which can be tailored to reproduce stress-strain responses of biological tissues. Demonstration of reconfigurable volumetric 3D display suggests rich application opportunities in biointegrated electronics and tissue scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/sciadv.adz0718 | DOI Listing |
Ethnopharmacological Relevance: Heart failure (HF), the terminal stage of various cardiovascular diseases, represents a significant threat to global health. Fuxin Decoction (FXD), a classical Traditional Chinese Medicine (TCM) formula, has demonstrated therapeutic efficacy in HF treatment. However, its bioactive components and precise mechanisms remain to be elucidated.
View Article and Find Full Text PDFJ Adv Res
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: tangtao@za
Introduction: Microencapsulated pyraclostrobin (PYR-CS) has gained widespread adoption in agriculture owing to its extended efficacy and reduced risks for non-target organisms. However, knowledge remains limited regarding its degradation in soil and effects on soil microorganisms.
Objectives: This study investigates the hypothesis that microencapsulation alters pyraclostrobin degradation and reshapes soil microbial communities compared with conventional formulations, including emulsifiable concentrate (PYR-EC) and technical material (PYR-TC).
J Ethnopharmacol
September 2025
Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China. Electronic address:
Ethnopharmacological Relevance: Curcuma wenyujin was first recorded in the Tang Dynasty's Xinxiu Bencao and has been traditionally used to treat blood stasis syndrome. Its active component curdione exhibits antiplatelet effects, though its anticoagulant mechanisms remain unclear and require further investigation.
Aim Of The Study: To investigate the anticoagulant activity of curdione, identify potential targets through integrated screening, and elucidate the underlying mechanisms.
J Ethnopharmacol
September 2025
Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:
Ethnopharmacological Relevance: Acute lung injury (ALI) is a severe health issue characterized by high morbidity and mortality, driven by excessive inflammatory responses. The traditional Chinese medicine Huashi Baidu Granules (HBG) demonstrated clinical efficacy in treating severe ALI, yet its mechanisms remain unclear.
Aim Of The Study: This research aimed to examine the efficacy and underlying mechanisms of HBG in a lipopolysaccharide (LPS)-induced ALI model, identify core herbal constituents, active compounds, and therapeutic targets, providing a foundation for optimizing HBG-based treatments.
Radiother Oncol
September 2025
Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada.
Purpose/objectives: Low Dose-Rate Brachytherapy (LDR) and High Dose-Rate Brachytherapy (HDR) are options for favorable risk prostate cancer. We hypothesized that HDR provides comparable disease control with less urinary toxicity. Primary objective was to determine prostate cancer control at 48 months, defined as a PSA < 0.
View Article and Find Full Text PDF