Dry Synthesis of Pure and Ultrathin Nanoporous Metallic Films.

ACS Appl Mater Interfaces

Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoporous metals possess unique properties attributed to their high surface area and interconnected nanoscale ligaments. They are mostly fabricated by wet synthetic methods that are not universal to various metals and not free from impurities due to solution-based etching processes. Here, we demonstrate that the plasma treatment of metal nanoparticles formed by physical vapor deposition is a general route to form such films with many metals including the non-noble ones. The resultant nanoporous metallic films are free of impurities and possess highly curved ligaments and nanopores. The metal films are ultrathin, yet remarkably robust and very well connected, and thus are highly promising for various applications such as transparent conducting electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906609PMC
http://dx.doi.org/10.1021/acsami.2c19584DOI Listing

Publication Analysis

Top Keywords

nanoporous metallic
8
metallic films
8
free impurities
8
dry synthesis
4
synthesis pure
4
pure ultrathin
4
ultrathin nanoporous
4
films
4
films nanoporous
4
nanoporous metals
4

Similar Publications

Separation of xylene isomers, serving as indispensable feedstock in the petrochemical industry, is important but significantly challenging due to their similar physicochemical properties. With readily tunable network structures and chemical functionalities, metal-organic frameworks (MOFs) are promising for separation and many other potential applications. Here, we computationally design 150 lanthanide-based MOFs with one-dimensional triangular nanopores by varying metal compositions.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF

Dynamic Restructuring of Stacking-Fault-Rich Copper Catalysts.

Small

September 2025

Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.

Copper (Cu) catalysts with abundant defects are pivotal for converting CO into valuable multi-carbon products. However, the practical application of Cu catalysts is challenged by the thermodynamic instability of the defects, often leading to surface reconstruction during catalytic processes. Here, it is found that particle size and COO-containing intermediates are key factors driving reconstruction, as the defect stability is size-dependent and can be amplified by leveraging the highly reactive intermediates as the initial reactant.

View Article and Find Full Text PDF

This study assessed the health risks of heavy metal contamination in groundwater in Siwa Oasis, Egypt's northwestern desert, and their potential decontamination using a marble-based nanoporous Ca-MCM-41 structure as an adsorbent. Fe, Cd, Cr, Pb, and Mn contents exceeded World Health Organization (WHO) guidelines with potential non-carcinogenic risks and carcinogenic risks based on the hazard index (HI) and Monte Carlo simulations. Ca-MCM-41 showed significant performances in the removal of most of these toxic ions with batch saturation uptake capacities of 239 mg/g Cd(II), 252 mg/g Fe(II), 308 mg/g Pb(II), 132 mg/g Cr(VI), and 154.

View Article and Find Full Text PDF

Effect of Anodic Aluminium Oxide Structure on the Electroless Ni-P Distribution into Nanopores.

Materials (Basel)

August 2025

CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.

The anodization of aluminium/aluminium alloys is widely used to produce anodic nanoporous networks for metal layered structures, with applications in energy harvesting technologies and sensor systems. Anodic aluminium oxide (AAO) with thickness of ~10 μm and average pore diameter of 13, 33, and 95 nm is prepared by tuning acids and voltages, being further used for electroless nickel deposition, performed for 10 min using conventional electrolyte with sodium hypophosphite reductor and pH 4.5.

View Article and Find Full Text PDF