98%
921
2 minutes
20
The anodization of aluminium/aluminium alloys is widely used to produce anodic nanoporous networks for metal layered structures, with applications in energy harvesting technologies and sensor systems. Anodic aluminium oxide (AAO) with thickness of ~10 μm and average pore diameter of 13, 33, and 95 nm is prepared by tuning acids and voltages, being further used for electroless nickel deposition, performed for 10 min using conventional electrolyte with sodium hypophosphite reductor and pH 4.5. The formation of Ni nanotubes or nanorods is found to be strongly dependent on AAO pore size. Ni is detected in the whole pore depth and found to form 5-7 μm long continuous tube-like structures only in AAO with pore diameter of 95 nm, being kept just on the AAO top for smaller pore diameters. Nickel distribution in pores along cross-section of AAO is studied as well revealing continuously decreasing ratio to phosphorus amount. The magnetic properties of the resulting Ni 3D structure of a flat conductive layer and nanotubes perpendicular to it do not show significant differences in parallelly and perpendicularly oriented magnetic fields. These observations are discussed considering possible formation mechanisms for an electroless deposited Ni layer on AAO with different structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387956 | PMC |
http://dx.doi.org/10.3390/ma18163797 | DOI Listing |
J Colloid Interface Sci
September 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Precise control of particle size, pore size distribution, and carbon layer spacing under green and low-energy conditions is critical for developing advanced carbon electrodes for supercapacitors and sodium-ion batteries (SIBs). Herein, we proposed a new strategy to prepare an MgAl bimetallic metal-organic framework (MOF) via a pre-ionization strategy, effectively avoiding harsh conditions and using organic solvents in hydrothermal synthesis. By fine-tuning the Mg/Al ratio and pyrolysis conditions, the particle size, pore size distribution and carbon layer spacing of rod porous carbon (RPC) were precisely adjusted.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
This study presents a novel photovoltaic triboelectric nanogenerator (PTENG) that operates on sliding contacts between n-type (gallium arsenide) GaAs and metal electrodes in the presence of periodic light illumination, which offers harvesting energy synergistically by integrating both photovoltaic and triboelectric effects to enhance the energy output. Using an in-house built test setup with provision of laser illumination, the open-circuit voltage () and short-circuit current () were measured for the n-GaAs semiconductors with different metal contacts (Al and Cu). Under both laser light (630 nm) and without laser light conditions, n-GaAs with aluminum contacts exhibited the highest and values, reaching up to 11.
View Article and Find Full Text PDFSmall
September 2025
Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, Częstochowa, 42-200, Poland.
Bent-core nematic liquid crystals exhibit unique properties, including giant flexoelectricity and polar electro-optic responses, making them ideal for energy conversion and electro-optic applications. When confined in nanopores, they can stabilize chiral nanostructures, enhance polar order, and enable defect-driven switching - offering potential in nanofluidics, sensing, and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CB confined in anodic aluminum oxide (AAO) and silica membranes with precisely engineered cylindrical nanochannels - ranging from just a few nanometers to several hundred nanometers-is examined.
View Article and Find Full Text PDFJASA Express Lett
September 2025
IEMN (UMR CNRS 8520), University Polytechnique Hauts-de-France, CNRS, University Lille, INSA HdF, F-59313 Valenciennes,
This study presents a non-destructive method for estimating surface acoustic wave attenuation, which is highly sensitive to microstructural features, especially at high frequencies. The method uses a single wideband dispersive interdigital transducer (IDT) that remotely emits acoustic waves at the sample's edge. Chirp compression of the temporal displacement response is achieved by correlating the excitation signal with the spatial configuration of the IDT's electrodes.
View Article and Find Full Text PDFScience
September 2025
Institute of Engineering Research, Korea University, Seoul, Republic of Korea.
Chiral crystals with well-defined handedness in atomic arrangements exhibit properties such as spin selectivity, asymmetric magnetoresistance, and skyrmions. Although similar geometry-induced phenomena in chiral organic molecule-based systems were observed, synthesizing uniform inorganic nanostructures with desired chirality using a scalable method remains challenging. We electrochemically synthesized chiral ferromagnetic cobalt-iron nanohelices from nanoparticles in anodized aluminum oxide templates.
View Article and Find Full Text PDF