This study presents a non-destructive method for estimating surface acoustic wave attenuation, which is highly sensitive to microstructural features, especially at high frequencies. The method uses a single wideband dispersive interdigital transducer (IDT) that remotely emits acoustic waves at the sample's edge. Chirp compression of the temporal displacement response is achieved by correlating the excitation signal with the spatial configuration of the IDT's electrodes.
View Article and Find Full Text PDFThis study focuses on the possibility of generating divergent surface acoustic waves (SAWs) with interdigital transducers (IDTs) deposited on Y128° Lithium Niobate for non-destructive testing applications, particularly in the context of manufacturing layer-on-substrate systems for microelectronic components. The selected approach is to diffuse the SAWs over a large surface area and in various directions in order to analyze the structure and detect any defects when using the well-known passive imaging by correlating the diffuse acoustic field. The introduction of SAWs is achieved using offset interdigital transducers that make acoustic contact with the sample under analysis without causing damage.
View Article and Find Full Text PDFThis paper deals with non-destructive testing of thin layer structures using Rayleigh-type waves over a broad frequency range (25-125 MHz). The dispersion phenomenon was used to characterize a layer-on-substrate-type sample comprising a thin layer of platinum 100 nm thick on a silicon substrate. The originality of this paper lies in the investigation of different ways of generating surface acoustic waves (SAWs) with large bandwidth interdigital transducers (IDTs) as well as the development of a measuring device to accurately estimate the SAW phase velocity.
View Article and Find Full Text PDFSurface Acoustic Wave Interdigital Transducers (SAW-IDT) has a considerable application potential for characterization of properties of thin layers, coatings and functional surfaces. For optimization of these SAW-IDTs, it is necessary to study various SAW-IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. The finite element method (FEM) is generally used to model such transducers but results are obtained in several hours (or days).
View Article and Find Full Text PDFWideband surface acoustic wave (SAW) generation with a spatial chirp-based interdigital transducer was optimized for non-destructive characterization and testing of coatings and thin layers. The use of impulse temporal excitation (Dirac-type negative pulse) leads to a wide band emitter excitation but with significantly limited SAW output amplitudes due to the piezoelectric crystal breakdown voltage. This limitation can be circumvented by applying a temporal chirp excitation corresponding in terms of frequency band and duration to the spatial chirp transducer configuration.
View Article and Find Full Text PDFControlling the thin film deposition and mechanical properties of materials is a major challenge in several fields of application. We are more particularly interested in the characterization of optical thin layers produced using sol-gel processes to reduce laser-induced damage. The mechanical properties of these coatings must be known to control and maintain optimal performance under various solicitations during their lifetime.
View Article and Find Full Text PDF