98%
921
2 minutes
20
Separation of xylene isomers, serving as indispensable feedstock in the petrochemical industry, is important but significantly challenging due to their similar physicochemical properties. With readily tunable network structures and chemical functionalities, metal-organic frameworks (MOFs) are promising for separation and many other potential applications. Here, we computationally design 150 lanthanide-based MOFs with one-dimensional triangular nanopores by varying metal compositions. Compared with -xylene (X) and -xylene (X), -xylene (X) exhibits the strongest interaction with these MOFs, as it can wedge at the vertices of triangular nanopores. Because of such shape-matching, highly selective adsorption of X is observed, with exceptional X/X and X/X selectivities. Remarkably, the nanopore size of these MOFs can be systematically adjusted through different metal combinations, achieving efficient xylene separation. The proposed design strategy would facilitate the development of new MOFs and other framework materials for highly selective xylene separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5nr02310f | DOI Listing |
Mol Psychiatry
September 2025
Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.
Dysregulated dopaminergic signaling has been implicated in the pathophysiology of major depressive disorder (MDD) and childhood sexual abuse (CSA), but inconsistencies abound. In a multimodal PET-functional MRI study, harnessing the highly selective tracer [C]altropane, we investigated dopamine transporter availability (DAT) and resting-state functional connectivity (rsFC) within reward-related regions among 112 unmedicated individuals (MDD: n = 37, MDD/CSA: n = 18; CSA no MDD: n = 14; controls: n = 43). Striatal DAT and seed-based rsFC were assessed in the dorsal and ventral striatum and the ventral tegmental area.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFNat Rev Clin Oncol
September 2025
German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany.
Targeted radionuclide therapy (TRT) is a cutting-edge treatment approach in oncology that combines the molecular precision of targeted agents with the effect of radiotherapy to selectively deliver cytotoxic radiation to cancer cells. Research efforts from the past few decades have led to a diverse molecular landscape of TRT and have provided lessons for further rational development of targeted radiopharmaceuticals and expansion of the clinical applications of this treatment modality. In this Review, we discuss TRT in the context of therapeutic approaches currently available in oncology, describe the broad range of established and emerging targets for TRT including innovative approaches to exploit vulnerabilities presented by the tumour microenvironment, and address the challenges for clinical translation and molecular optimization.
View Article and Find Full Text PDFNPJ Antimicrob Resist
September 2025
Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.
Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.
The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.
View Article and Find Full Text PDF