Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, metal-organic frameworks (MOFs) as the cathode materials for aqueous zinc-ion batteries (ZIBs) received growing attention. Herein, a novel MOF, Ni-Ndi-trz (Ndi-trz=2,7-di(4H-1,2,4-triazol-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) was synthesized through a solvothermal method. Its rational design using a naphthalene diimide (Ndi) core allowed the formation of a four-fold interpenetrated pcu (primitive cubic) topology. The as-synthesized Ni-Ndi-trz is highly stable over a wide pH range (0-12) for 30 days, which is critical to ensure the decent cyclability of zinc-ion batteries (ZIBs). When used as the cathode material of ZIBs, it shows a high initial specific capacity of 90.7 mAh g and excellent cycling stability. Remarkably, three-electrode system tests, ex situ FTIR, UV/Vis and XPS spectra revealed that the Ndi core of Ni-Ndi-trz undergoes a reversible interconversion between the keto and enol forms when interacting with Zn ions. This work may shed light on the feasibility of designing novel MOFs and exploring their mechanisms for zinc ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202202305DOI Listing

Publication Analysis

Top Keywords

zinc-ion batteries
12
highly stable
8
naphthalene diimide
8
cathode material
8
aqueous zinc-ion
8
batteries zibs
8
ndi core
8
stable metal-organic
4
metal-organic framework
4
framework redox-active
4

Similar Publications

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF

Potassium optimization of sodium hydrogen vanadate thin nanosheets with superior performance for aqueous zinc-ion batteries.

Chem Commun (Camb)

September 2025

Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

In this work, a series of potassium ion (K) pre-intercalated sodium hydrogen vanadates (K-HNVO) are prepared through a facile route. The introduction of K modulates the microstructure of the pristine sodium metavanadate and increases the interlayer spacing, thereby resulting in improved charge transport kinetics. Moreover, the pillaring effect of K enhances the structural stability of the pristine material.

View Article and Find Full Text PDF

Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.

View Article and Find Full Text PDF

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF

Pre-intercalation has emerged as a highly effective strategy to enhance structural integrity and ion transport kinetics in cathodes for aqueous Zn-ion batteries. Here, we report a zinc-ion pre-intercalated hydrate vanadium oxide cathode, in which the initial insertion of Zn induces a significant expansion of the interplanar spacing, followed by contraction at higher Zn concentrations owing to strong electrostatic interactions with the VO framework. Such competing expansion and contraction of interplanar spacing enhances the overall electrochemical properties.

View Article and Find Full Text PDF