98%
921
2 minutes
20
Biochar, an environmentally friendly soil amendment, is created via a series of thermochemical processes from carbon-rich organic matter. The biochar addition enhances soil characteristics dramatically and increases crop growth and yields. However, the mechanism by which biochar improves plant lodging resistance, which is heavily influenced by cell walls, remains unknown. Three rice cultivars were grown in an experimental field provided with four concentrations of biochar (10, 20, 30, 40 t ha). The biochar application enhanced biomass production and lodging resistance in all three cultivars by up to 29 % and 22 %, respectively, with the largest improvement at a biochar application rate of 30 t ha. Biochar application significantly enhanced stem cell wall-related characteristics, with an increase in stem breaking force, wall thickness, and plumpness of 52 %, 32 %, and 21 %, respectively, which are suggested to be major contributors to enhanced lodging resistance and biomass yield. Notably, cell wall composition and silica content analysis indicated a significant increase in hemicellulose, lignin, and silica content in biochar-treated samples up to 36 %, 13 %, and 58 %, respectively, when compared to plants not treated with biochar. Integrative analysis suggested that silica, hemicellulose, and lignin were co-deposited in cell walls, which influenced biomass production and lodging resistance. Furthermore, the transcriptome profile revealed that biochar application increased the expression of genes involved in biomass production, cell wall formation, and silica deposition. This study suggests that biochar application might improve both biomass production and lodging resistance by promoting the co-deposition of silicon with hemicellulose and lignin in cell walls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158818 | DOI Listing |
ACS Omega
September 2025
Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute, Wuhan 430074, China.
Capacitive deionization (CDI) is a crucial technique for industries managing liquid chemical waste, requiring efficient electrode materials to ensure optimal performance. This study presents a novel undergraduate experimental teaching framework that integrates the understanding, development, and practical application of porous biochar-based CDI systems. Designed to support both students and educators, the curriculum guides learners through the synthesis of biochar electrodes via biomass pyrolysis and the assembly of CDI devices for treating phosphogypsum wastewater.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.
View Article and Find Full Text PDFJ Environ Manage
September 2025
School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.
Agricultural supply chains face significant challenges in achieving food security and sustainability, particularly due to climate change and waste production. Effectively managing these supply chains, especially in the context of uncertainties, is crucial for optimizing resource use and minimizing waste. This research develops a multi-objective optimization for designing a sustainable and responsive closed-loop agricultural supply chain network, focusing on jujube products under uncertain conditions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
Residues of veterinary antibiotics such as tylosin in soils can induce selective pressure on indigenous soil microbes and increase the dissemination risk of antibiotic resistance genes (ARGs) by horizontal gene transfer (HGT), which poses a serious threat to both soil and public health. While conventional bioremediation methods face challenges in efficiency and stability, enzyme-based approaches offer promising alternatives. This study developed a novel biochar-immobilized tylosin-degrading enzyme (BIE) system to simultaneously address tylosin contamination and antibiotic resistance gene (ARG) proliferation in agricultural soils.
View Article and Find Full Text PDF