Protective effects of E. coli Nissle 1917 on chickens infected with Salmonella pullorum.

Microb Pathog

College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The probiotic E. coli Nissle 1917 (EcN) plays an important role in regulating the microbial components of the gut and preventing inflammation of the gastrointestinal tract. Currently, the long-term use of antibiotics for the treatment of lethal white diarrhea in chicks caused by Salmonella has led to increased morbidity and mutation rates. Therefore, we want to use EcN as an antibiotic alternative as an alternative approach to prevent Salmonella-induced white diarrhea in chickens. To date, there are no reports of EcN being used for the prevention and control of Salmonella pullorum (S. pullorum) in chickens. In vitro, pretreatment with EcN significantly decreased the cellular invasion of S. pullorum CVCC533 in a chicken fibroblast (DF-1) cell model. Then, 0-day-old egg-laying chickens were orally inoculated with EcN at a dose of 10 CFU/100 μL at either Day 1 (EcN1) or both Day 1 and Day 4 (EcN2). Then, S. pullorum CVCC533 was used to challenge the cells at a dose of 1.0 × 10 CFU/100 μL on Day 8. Next, the body weights and survival rates were recorded for 14 consecutive days, and the colonization of S. pullorum in the spleen and liver at 7 days post-challenge (dpc) was determined. Chicken feces were also collected at 2, 4, 6 and 8 dpc to evaluate the excretion of pathogenic bacteria in feces. The liver, duodenum and rectum samples were collected and analyzed by pathological histology at 7 dpc to evaluate the protective effect of EcN on the mucosa, villi and crypts of the small intestine. The spleen and bursa were collected, and the immune organ index was calculated. In addition, the contents of the cecum of chicks were collected at 7 dpc for 16S rRNA sequencing to detect the distribution of microbial communities in the intestine. The results showed that EcN was able to protect against CVCC533 challenge, as shown by decreased body weight loss, mortality and shedding of pathogenic bacteria in fecal samples in the EcN1 plus Salmonella challenge group (EcN1S) but not the EcN2 plus Salmonella challenge group (EcN2S). The pathogenic changes in the liver, duodenum and rectum also demonstrated that one dose but not two doses of EcN effectively prolonged the length of the pilus with decreased crypt depth, indicating its protective effects against S. pullorum. In addition, the 16S rRNA sequencing results suggested that EcN could enlarge the diversity of intestinal flora, decrease the abundance of pathogenic bacteria and increase the abundance of beneficial bacteria, such as Lactobacillus. In conclusion, EcN has shown moderate protection against S. pullorum challenge in chickens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2022.105768DOI Listing

Publication Analysis

Top Keywords

pathogenic bacteria
12
ecn
10
protective effects
8
coli nissle
8
nissle 1917
8
pullorum
8
salmonella pullorum
8
white diarrhea
8
pullorum cvcc533
8
cvcc533 challenge
8

Similar Publications

Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).

Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.

View Article and Find Full Text PDF

Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.

Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.

View Article and Find Full Text PDF

Multi drug resistant Pseudomonas aeruginosa in burn infection among Iraq patients.

Cell Mol Biol (Noisy-le-grand)

September 2025

Medical Microbiology Department, College of Medicine, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq.

Pseudomonas aeruginosa is a prominent opportunistic pathogen, especially in burn wound infections, and is often associated with high morbidity and mortality due to its multidrug resistance (MDR) characteristics.This study aimed to evaluate the multidrug resistance profile and perform a molecular phylogenetic analysis of P. aeruginosa isolates recovered from human burn infection sample .

View Article and Find Full Text PDF

Prevalence, characterization, and transmissible factors of foodborne pathogens in the Al-Qassim Region, Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

September 2025

Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 P.O. Box 6666, Saudi Arabia.

Foodborne illnesses pose a significant public health threat globally, particularly in Saudi Arabia, where the rapid growth of the food service sector has increased the risk of exposure to multidrug-resistant (MDR) bacteria. Traditional microbiological methods are often time-consuming and may lack precision, highlighting the need for faster and more accurate diagnostic alternatives. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was employed for the rapid and precise identification of bacterial contaminants in ready-to-eat (RTE) foods, alongside an assessment of their antibiotic resistance profiles.

View Article and Find Full Text PDF

Biofilm formation and other virulence phenotypes under quorum sensing regulation play a vital role in the pathogenicity of Aeromonas hydrophila, triggering the emergence of multi-drug resistance (MDR) which increases fish mortality, environmental issues, and economic loss in aquaculture, necessitating the discovery of novel drugs to bypass standard antibiotics. Here, quorum quenching (QQ) may be a sustainable anti-virulent approach. β-Lactamase enzyme obtained from Chromohalobacter sp.

View Article and Find Full Text PDF