98%
921
2 minutes
20
Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.127650 | DOI Listing |
Biophys J
September 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
The concept of the circular bioeconomy is a carbon neutral, sustainable system with zero waste. One vision for such an economy is based upon lignocellulosic biomass. This lignocellulosic circular bioeconomy requires CO absorption from biomass growth and the efficient deconstruction of recalcitrant biomass into solubilized and fractionated biopolymers which are then used as precursors for the sustainable production of high-quality liquid fuels, chemical bioproducts and bio-based materials.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Chestnut (Castanea mollissima Blume) is a nutritionally dense food, notably rich in starch, making it an important natural source of carbohydrates and energy for human diets. However, its high content of rapidly digestible starch (RDS) limits its use in low-glycemic-index (GI) food products. This study developed a synergistic bioprocess combining Lactobacillus plantarum fermentation and pullulanase-catalyzed debranching to enhance the nutritional and structural characteristics of chestnut powder.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:
Starch retrogradation critically compromises shelf stability in rice-based products. This study demonstrates Lactobacillus plantarum (LP) fermentation as an effective biological strategy to retard retrogradation in japonica (JRS), indica (IRS), and glutinous (GRS) rice starches. Controlled fermentation (0-48 h) followed by 4 °C storage (0-14 d) induced significant structural and functional modifications.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou Univ
Glycogen is a complex branched glucose polymer that serves as energy reservoir in animals and some bacteria; it has also been synthesized in vitro. It comprises small β particles linked in large aggregates termed α particles. Theory, based on the evolutionary processes which cause these particles to be formed, suggests that if all ingredients for in vitro particle synthesis were added to a suspension of α particles, then these will grow to a steady-state size distribution, after which new particles will be formed.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Amylose content (AC) is a key determinant of wheat quality, and the TaWaxy gene determined amylose synthesis with a dose-dependent effect on AC. In this study, the TaWOX5 gene, which significantly enhances wheat transformation efficiency, was combined with CRISPR/SpCas9 system to generate TaWaxy mutants in a commercial winter wheat Jimai 22. Seven transgene-free mutant types were produced, compared to only three transgene-free mutants in the spring wheat variety Ningchun 4.
View Article and Find Full Text PDF