Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400-700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and paralogous versions of photosystem subunits and phycobiliproteins that confer far-red light (FRL) absorbance (700-800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, alternate photosystem II (PSII) subunits enable the complex to bind chlorophylls and , which absorb at lower energy than chlorophyll but still support water oxidation. How the FaRLiP response arose remains poorly studied. Here, we report ancestral sequence reconstruction and structure-based molecular evolutionary studies of the FRL-specific subunits of FRL-PSII. We show that the duplications leading to the origin of two PsbA (D1) paralogs required to make chlorophyll and to bind chlorophyll in water-splitting FRL-PSII are likely the first to have occurred prior to the diversification of extant cyanobacteria. These duplications were followed by those leading to alternative PsbC (CP43) and PsbD (D2) subunits, occurring early during the diversification of cyanobacteria, and culminating with those leading to PsbB (CP47) and PsbH paralogs coincident with the radiation of the major groups. We show that the origin of FRL-PSII required the accumulation of a relatively small number of amino acid changes and that the ancestral FRL-PSII likely contained a chlorophyll molecule in the electron transfer chain, two chlorophyll molecules in the antenna subunits at equivalent positions, and three chlorophyll molecules whose site energies were altered. The results suggest a minimal model for engineering far-red light absorbance into plant PSII for biotechnological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325196PMC
http://dx.doi.org/10.3390/microorganisms10071270DOI Listing

Publication Analysis

Top Keywords

far-red light
12
visible light
8
duplications leading
8
chlorophyll molecules
8
chlorophyll
6
light
5
subunits
5
molecular evolution
4
far-red
4
evolution far-red
4

Similar Publications

Weeds are one of the major constraints for wheat productivity, causing significant yield losses worldwide. While chemical control is the most used practice to overcome weed damage, its efficacy is challenged by increasing weed resistance to most used herbicides, which is an expanding phenomenon caused by herbicide overuse/misuse. Modern wheat varieties are less able to perceive the presence of weeds than old varieties and are therefore less competitive against them and require chemical control to ensure adequate yields.

View Article and Find Full Text PDF

GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.

View Article and Find Full Text PDF

Phytochrome B stabilizes the KNOX transcription factor BP/KNAT1 to promote light-initiated seed germination in Arabidopsis thaliana.

Plant Commun

September 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, University of Chinese Academy of Sciences

Seed germination is a critical step in the life cycle of plants. The far-red/red light photoreceptor phytochrome B (phyB) plays a dominant role in promoting seed germination, mainly by modulating the metabolism of gibberellin (GA) and abscisic acid (ABA), although the underlying mechanism remains poorly understood. In this study, we identified BREVIPEDICELLUS (BP)/KNAT1, a KNOX transcription factor that acted downstream of phyB and activated light-initiated seed germination in Arabidopsis thaliana.

View Article and Find Full Text PDF

Physiological and Phytochemical Responses of L. to End-of-Day Red/Far-Red and Green Light.

Biology (Basel)

July 2025

TADRUS Research Group, Department of Agricultural and Forestry Engineering, ETSIIAA, University of Valladolid, Avda. Madrid 44, 34004 Palencia, Spain.

L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown under a constant red/blue light background, compared with a red/blue control without EOD treatment.

View Article and Find Full Text PDF

Crop leaves absorb approximately 90% of visible photons (400 - 700 nm) but transmit or reflect most far-red (FR) photons (700 - 800 nm). However, some cyanobacteria use FR photons up to 800 nm by incorporating chlorophyll (Chl) d or/and f into their photosystems. Here, we use a 3D canopy model to evaluate whether introducing these pigments could improve photosynthetic performance of field grown soybean.

View Article and Find Full Text PDF