Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No. 26') seedlings through combined physiological, biochemical, transcriptomic, and proteomic analyses. The results revealed that FR light and GA significantly promoted internode elongation in cucumber seedlings, whereas a GA biosynthesis inhibitor (PAC) inhibited the promoting effect of FR light. Hormone content determination revealed that FR light and GA decreased the contents of abscisic acid (ABA), indole-3-acetic acid (IAA), cytokinin (CTK), and jasmonate (JA) in cucumber seedling internodes. Bioinformatics analysis revealed that the expression patterns of the Co-DEGs and Co-DEPs were consistent in the FR (WL combined with FR light) and WLG (WL, in which plants were sprayed GA) groups, as well as in the FRP (FR, in which plants were sprayed PAC) and WL (full-spectrum LED white light) groups, suggesting that the mechanisms of FR and GA were similar in these Co-DEGs and Co-DEPs. Further analysis of these Co-DEGs and Co-DEPs revealed that they were involved mainly in cell wall biosynthesis and modification, lignin synthesis, hormone metabolism, and signal transduction pathways. In conclusion, this study revealed the important role of GA in FR light-induced internode elongation in cucumber seedlings, and this promoting effect was achieved mainly through the regulation of aquaporins, expansins, hormone metabolism, and signal transduction-related genes/proteins. This study provides new insights into the molecular mechanism of FR light-induced internode elongation in cucumber seedlings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-025-03598-4 | DOI Listing |