Advanced oxidation processes and selection of industrial water source: A new sight from natural organic matter.

Chemosphere

Xinjiang Shuchuang Environmental Protection Technology Co., Ltd, Alaer, 843399, Xinjiang, PR China.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural organic matter (NOM) refers to the dissolved organic matter in natural water that can pass through 0.45 μm filter membrane. As a pivotal role in the surface water body, it has a significant effect on the efficiency of AOPs. In this study, Excitation emission matrix - parallel factor (EEM-PARAFAC) analysis is used to elucidate the changes of NOM fluorescence peaks after electrochemical oxidation process, two-dimensional correlation spectroscopy (2D-FTIR-COS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) are utilized to clarify the molecular characteristics of NOM in surface water and the effects of electrochemical oxidation on NOM molecules. The results indicate that parts of NOM molecules are mineralized into simple compounds and precursors of refractory organic matters produced by some NOM molecules after AOPs. It is concluded that the precursors of these refractory organic matters may belong to terrestrial humus (C2). Therefore, for the purpose of avoiding more refractory organic pollutants produced by NOM which can reduce the performance of AOPs in the water treatment process, factories should choose water sources with less humus as industrial water supply, or degrade humus by physical or chemical methods before industrial water supply.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135183DOI Listing

Publication Analysis

Top Keywords

industrial water
12
organic matter
12
nom molecules
12
refractory organic
12
water
8
natural organic
8
matter natural
8
surface water
8
electrochemical oxidation
8
precursors refractory
8

Similar Publications

Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.

View Article and Find Full Text PDF

Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination.

Beilstein J Nanotechnol

August 2025

Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.

To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.

View Article and Find Full Text PDF