Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesoporous polydopamine (MPDA) and MPDA-based nanosystems have been widely used in the field of photothermal therapy (PTT) and drug delivery. However, synthesis of the corresponding nanoplatforms for efficient PTT and controlled drug release simultaneously in the second near infrared (NIR-II) region remains a great challenge. Herein, a NIR-II and pH dual-responsive HMPDA@CuSe cascade catalytic nanoplatform was constructed by assembling hollow mesoporous polydopamine (HMPDA) with ultra-small CuSe, which could compensate the inadequate NIR-II-induced PTT effect of HMPDA and enhance the efficacy of chemodynamic therapy (CDT) simultaneously under NIR-II laser irradiation. Meanwhile, doxorubicin (DOX) and glucose oxidase (GOx) were encapsulated into the synthesized HMPDA@CuSe using the photothermal-induced phase change material (PCM) tetradecyl (1-TD) as a gatekeeper to achieve the controlled release of the cargo. Under 1064 nm laser, the generated heat could cause 1-TD melting, resulting in the release of large amounts of DOX and GOx. The released GOx could further catalyze glucose to HO and gluconic acid, which in turn promoted the effects of PTT/CDT and the release of drugs. and experiments showed that the synthesized HMPDA@CuSe-DOX-GOx@PCM (HMPC-D/G@PCM) nanosystem exhibited a significant tumor cell inhibition effect by combining different treatment modes. Thus, this smart nanoplatform with multiple stimuli-activated cascade reactions provided a new idea for designing effective multi-modal combination therapy for tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr00487aDOI Listing

Publication Analysis

Top Keywords

cascade catalytic
8
controlled drug
8
drug release
8
mesoporous polydopamine
8
release
5
precisely nir-ii-activated
4
nir-ii-activated ph-responsive
4
ph-responsive cascade
4
catalytic nanoreactor
4
nanoreactor controlled
4

Similar Publications

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

NU-1000/Cu Nanocomposite-Immobilized Organophosphate Hydrolase for the Cascade Conversion of Methyl Parathion to 4-Aminophenol.

Langmuir

September 2025

State Key Laboratory of Synthetic Biology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (MOE), and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.

Effective degradation and detoxification of the highly toxic organophosphate pesticide methyl parathion (MP) are important for pollution treatment and sustainable development. Enzymatic hydrolysis of MP by organophosphate hydrolase (OPH) is an effective way. However, hydrolytic product 4-nitrophenol (4-NP) remains environmentally hazardous.

View Article and Find Full Text PDF

Thyroid carcinoma is among the most common endocrine system malignancies. Lactate metabolism and lactylation modification roles in carcinogenesis and development have garnered more interest in recent years. The expression and function of lactate transporters (MCTs) and significant metabolic enzymes are included in our summary of the characterisation of lactate metabolism in thyroid cancer.

View Article and Find Full Text PDF

Multilayer metal-organic frameworks-based artificial cytoskeleton for boosting immunosensors performance.

Biosens Bioelectron

September 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address:

Artificial cytoskeletons are constructed to study the structure and function of eukaryotic cells. Metal-organic frameworks (MOFs) provide a strong foundation for the construction of artificial cytoskeleton by encapsulating enzyme, yet challenges such as random enzyme distribution and poor catalytic efficiency, impede the development of artificial cytoskeleton technologies. Herein, a multilayer MOFs-based programmable artificial cytoskeleton was constructed through a heterogeneous interfacial growth method, utilizing hierarchical encapsulation of enzymes to facilitate tandem biocatalytic reactions.

View Article and Find Full Text PDF