Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The performance of metagenomic next-generation sequencing (mNGS) in identifying pathogens in immunocompromised children was not very clear. The purpose of this study is to assess the performance of mNGS in this population and to investigate whether the integration of serum cytokines and mNGS assay could improve diagnostic accuracy. We retrospectively collected the clinical data of pediatric patients who suffered febrile diseases and underwent mNGS determination simultaneously in the department of hematology/oncology between January 2019 and March 2021. Specimens were sent for conventional microbiological test (CMT), mNGS, and serum cytokine measurement in parallel. A total of 258 episodes of febrile diseases were enrolled, mNGS was positive in 224 cases, while CMT was positive in 78 cases. mNGS and CMT were both positive in 70 (27.1%) cases and were both negative in 26 (10.1%) cases. There were 154 (59.7%) cases positive by mNGS only while 8 (3.1%) were positive by CMT only. It was common that two or more pathogens were simultaneously detected by mNGS in a single specimen, with only 61 tests identified a single organism. Whether the organisms reported by mNGS were the microbiological etiology of infection was evaluated. Of the 224 cases with positive mNGS results, 135 (58.4%), 30 (13.0%), and 59 (28.6%) were considered as "probable," "possible," and "unlikely," respectively. Patients with high IL-6 (≥ 390 pg/ml) were likely to be bacterial infection. Although mNGS reported mixed pathogens, 84.6% (33/39) and 83.3% (10/12) of patients presenting high IL-6 were confirmed as bacterial infection in the training and validation cohort, respectively. In conclusion, mNGS analysis demonstrates promising diagnostic potential in rapidly identifying clinically relevant pathogens. Given the detection of many clinically irrelevant organisms, the integration of IL-6 improves the precision of mNGS results interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982073PMC
http://dx.doi.org/10.3389/fmicb.2022.819467DOI Listing

Publication Analysis

Top Keywords

mngs
14
metagenomic next-generation
8
next-generation sequencing
8
immunocompromised children
8
febrile diseases
8
224 cases
8
cmt positive
8
cases positive
8
positive mngs
8
high il-6
8

Similar Publications

Description of a patient with multiple sclerosis (MS) who underwent immunotherapy with ocrelizumab and suffered a severe course of tick-borne encephalitis (TBE): A 33-year-old man presented with acute cerebellitis with tonsillar herniation. The initial suspected diagnosis of TBE was confirmed after a significant diagnostic delay, likely caused by negative serological testing due to B-cell depletion from ocrelizumab treatment for underlying MS. TBE diagnosis was made using polymerase chain reaction (PCR) and oligo-hybrid capture metagenomic next-generation sequencing (mNGS) of cerebral spinal fluid and brain biopsy samples which yielded a near-full length TBE Virus (TBEV) genome.

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Kobuviruses (family Picornaviridae, genus Kobuvirus) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, lyssaviruses, and filoviruses, though much of the bat virome still remains uncharacterized.

View Article and Find Full Text PDF

Diagnostic Challenges of Six-Pathogen Detected by mNGS in an Immunocompromised ICU Patient with Severe Community-Acquired Pneumonia-Induced Sepsis: A Case Report and Literature Review.

Infect Drug Resist

September 2025

Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.

Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the prognostic value of metagenomic next-generation sequencing(mNGS) using Nanopore sequencing technology (NST) versus traditional culture methods in infectious disease cases.

Methods: We conducted a retrospective, single-center observational study comparing clinical outcomes between patients and specimen types in NST group and those in culture-based control group. Cox Proportional Hazards regression and Kaplan-Meier survival analysis were conducted to evaluate the association between diagnostic strategy and 28-day mortality.

View Article and Find Full Text PDF