Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Li- and Mn-rich layered oxides (LMROs) are considered the most promising cathode candidates for next-generation high-energy lithium-ion batteries. The poor cycling stability and fast voltage fading resulting from oxygen release during charging, however, severely hinders their practical application. Herein, a strategy of introducing an additional redox couple is proposed to eliminate the persistent problem of oxygen release. As a proof of concept, the cycling stability of Li Ni Co Mn O , which is a typical LMRO cathode, is substantially enhanced with the help of the S /SO redox couple, and the capacity shows no decay with a retention of 100% after 700 cycles at 1C, far superior to the bare counterpart (61.7%). The surface peroxide ions (O ) are readily chemically reduced back to immobile O by S during charging, accompanied by the formation of SO , which plays a critical role in stabilizing the oxygen lattice and eventually inhibiting the release of oxygen. More importantly, the S ions are regenerated during the following discharging process and participate in the chemical redox reaction again. The findings shed light on a potential direction to tackle the poor cycling stability of high-energy anion-redox cathode materials for rechargeable metal-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202108543DOI Listing

Publication Analysis

Top Keywords

redox couple
12
oxygen release
12
cycling stability
12
li- mn-rich
8
mn-rich layered
8
poor cycling
8
oxygen
5
redox
4
couple strategy
4
strategy enables
4

Similar Publications

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

An interesting ruthenium(III) complex, -[Ru(HL)Cl(PPh)], has been synthesized using a redox-active tetradentate bis-azo diamine ligand (HL). This complex represents the first example of a structurally robust, air- and moisture-stable coordination compound featuring a redox non-innocent ligand that provides a unique N4 donor set comprising both strong π-acidic (azo) and σ-donating (amido) groups. The complex has been comprehensively characterized by elemental analysis, various spectroscopic techniques, and single-crystal X-ray diffraction (SCXRD) studies.

View Article and Find Full Text PDF

Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.

View Article and Find Full Text PDF

In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.

View Article and Find Full Text PDF