98%
921
2 minutes
20
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8893259 | PMC |
http://dx.doi.org/10.1093/genetics/iyac007 | DOI Listing |
Nat Aging
September 2025
State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Biology, Evolutionary Ecology and Infection Biology, Lund University, SE-223 62, Lund, Sweden.
Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Spine Surgery, Zhongda Hospital Southeast University, 210009 Nanjing, Jiangsu, China.
Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.
Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).
Pestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100
The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.
View Article and Find Full Text PDFAm J Med Genet A
September 2025
Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
Most complex V subunits are nuclear encoded and so far, were not found in association with recognized Mendelian disorders. ATP5PO is a candidate gene for complex V mitochondrial disease. It encodes the oligomycin sensitivity-conferring protein (OSCP), an essential component of the "stalk" region that links the F1 and F0 domains of the ATP synthase complex.
View Article and Find Full Text PDF