98%
921
2 minutes
20
Textiles are materials that are extensively used in everyday life; textile-based sensors can, therefore, be regarded as ideal devices for a health monitor. However, previously reported textile sensors have limited prospects due to their single function or incompatibility. Traditional textile sensors generally focus on signal detection, which has not been able to be combined with an actuator to provide real-time health status feedback. Thus, to date, there are no well-established health monitoring systems based on intelligent textiles. Herein, we present a wearable batch-prepared graphene-based textile based on laser-scribing and thermal-transfer technology. Integrated with four functions of strain sensing, pressure sensing, physiological electrical sensing, and sound emitting, the GT is able to detect human body signals and transduce them to sound signals when the user is in an abnormal physical state. Moreover, the GT has high linearity for both strain and pressure sensing; the coefficients of determination exceed 99.3% and 98.2%, respectively. The performance of the device remains stable up to a pressure of 1000 kPa. The response time of the GT possession reaches as low as 85 ms at 4.2 Pa pressure. Therefore, due to their diversified functions and good performance, the research on GT is expected to extend to the fields of health monitoring, sports monitoring, and so forth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c05701 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
Gel-based electronic skin (e-skin) has recently emerged as one of the most promising interfaces for human-machine interaction and wearable devices, owing to its exceptional flexibility, extensibility, transparency, biocompatibility, high-quality physiological signal monitoring, and system integration suitability. However, conventional hydrogel-based e-skins may exhibit limitations in mechanical strength and stretchability compatibility, as well as poor environmental stability. To address these challenges, following a top-down fabrication strategy, this study innovatively integrates poly(methacrylic acid), titanium sulfate, and ethylene glycol (EG) into the three-dimensional collagen fiber network structure of zeolite-tanned sheepskin to successfully develop an organogel (SMEMT) e-skin, which exhibits superior high toughness, environmental stability, high transparency (74% light transmittance at 550 nm), antibacterial properties and ecological compatibility.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, China.
At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia. Electronic address:
A novel smart textile swab was developed as an analytical tool for the onsite evaluation of biochemical changes in sweat toward potential applications in healthcare monitoring and drug testing. Betalain (BTA) was extracted from beetroot (Beta vulgaris L.) using a simple procedure.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, 54000, Pakistan. Electronic address:
The incorporation of nanomaterials into smart flexible interfaces is a developing requirement for real-time diagnostics applications. In this work, we report a novel optical fabric-based sensor for the analysis of glucose and hydrogen peroxide (HO), addressing critical needs of healthcare, industrial safety, and environmental analysis. In contrast to traditional rigid substrates, we utilized cotton fabric as a porous and flexible sensing platform, immobilizing cerium oxide nanoparticles (CeO₂-NPs) using hydrogel.
View Article and Find Full Text PDF