Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to use hydroxypropyl-β-cyclodextrin (HP-β-CD) as a novel carrier in solid SNEDDS and solid dispersions to enhance the solubility and oral bioavailability of poorly water-soluble dexibuprofen. The novel dexibuprofen-loaded solid SNEDDS was composed of dexibuprofen, corn oil, polysorbate 80, Cremophor® EL, and HP-β-CD at a weight ratio of 45/35/50/15/100. This solid SNEDDS spontaneously formed a nano-emulsion with a size of approximately 120 nm. Unlike the conventional solid SNEDDS prepared with colloidal silica as a carrier, this dexibuprofen-loaded solid SNEDDS exhibited a spherical structure. Similar to the dexibuprofen-loaded solid dispersion prepared with HP-β-CD, the transformation of the crystalline drug to an amorphous state with no molecular interactions were observed in the solid SNEDDS. Compared to the solid dispersion and dexibuprofen powder, solid SNEDDS significantly enhanced drug solubility and AUC. Therefore, HP-β-CD is a novel potential carrier in SNEDDS for improving the oral bioavailability of dexibuprofen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118433DOI Listing

Publication Analysis

Top Keywords

solid snedds
28
solid
12
solid dispersion
12
dexibuprofen-loaded solid
12
hp-β-cd novel
8
snedds
8
oral bioavailability
8
potential application
4
application hydroxypropyl-β-cyclodextrin
4
hydroxypropyl-β-cyclodextrin solid
4

Similar Publications

This study developed a hydroxypropyl methylcellulose acetate succinate (HPMCAS)-functionalized supersaturated self-nanoemulsifying drug delivery system (HPMCAS-SNEDDS@BA) to address the poor solubility and bioavailability of baicalin (BA), a flavonoid with anti-colitis efficacy. The formulation was systematically optimized through solubility screening, emulsification efficiency evaluation, and pseudo-ternary phase diagram analysis. Central composite design-response surface methodology (CCD-RSM) was employed to identify the optimal SNEDDS@BA composition, followed by HPMCAS ratio optimization based on supersaturation maintenance in biorelevant media.

View Article and Find Full Text PDF

Abiraterone acetate (ABT) is an androgen biosynthesis inhibitor approved for the treatment of prostate cancer. However, the treatment course of ABT is constrained by its high dose, poor solubility and permeability issues. A solid supersaturated self-nanoemulsifying drug delivery system (ssSNEDDS) is an excellent approach for improving drug loading.

View Article and Find Full Text PDF

The main purpose of this study was to design and develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) for the oral administration of benidipine (BD) and telmisartan (TEL) using the adsorption method with eucalyptus oil, Transcutol P, and Kolliphor EL via the Box-Behnken design approach. The prepared SNEDDS formulations were characterized using FTIR, DSC, SEM, and PXRD techniques and evaluated for zeta potential, refractive index, drug concentration, resistance to dilution, viscosity, and thermodynamic stability. Additionally, and stability studies were conducted.

View Article and Find Full Text PDF

Purpose: The inherent chemical instability of ramipril (RMP) can lead to reduced therapeutic efficacy and safety, emphasizing the need for innovative formulation strategies for increased stability and bioavailability. This study aims to develop RMP-loaded liquid and solid self-nanoemulsifying formulations (SNEDDSs) that incorporate cardioprotective black seed oil (BSO) as a natural source of bioactive thymoquinone (THQ) for comprehensive chemical stability and pharmacokinetic evaluation.

Methods: A systematic approach was employed to transform liquid SNEDDSs into both single-layer (Single-SNEPs) and multilayer (Multi-SNEPs) self-nanoemulsifying pellets through fluid bed coating technology.

View Article and Find Full Text PDF

This study aims to develop novel modified drug delivery systems (MDDS) including solid dispersions, solid self-nanoemulsifying drug delivery system (S-SNEDDS) and inclusion compound (IC) of poorly water-soluble tadalafil using various biological macromolecules and compare their ability to improve solubility, dissolution and bioavailability. Ingredients of MDDS were extensively screened using SEM, DSC, and XRD. The MDDS were testified for improved solubilization, dissolution, and bioavailability and were compared with tadalafil powder and commercial product (Cialis tablets 20 mg).

View Article and Find Full Text PDF