Publications by authors named "Soo-Jeong Lim"

Article Synopsis
  • This study presents electrostatic spraying as an innovative method to create nanoparticles for poorly water-soluble drugs, improving particle size distribution compared to traditional spray-drying methods.
  • Regorafenib was used as a model drug, and electrostatic spray-dried nanoparticles (ESDN) showed smaller, more uniform sizes, with enhanced solubility and faster release in water than conventional spray-dried nanoparticles (CSDN).
  • ESDN also exhibited greater cytotoxicity in cancer cells and significantly improved oral bioavailability and antitumor effects, indicating its potential for better drug delivery systems.
View Article and Find Full Text PDF
Article Synopsis
  • A novel technique was developed to improve the water solubility and oral bioavailability of aceclofenac using different nanoparticle systems, with sodium carboxymethylcellulose (Na-CMC) proving to be the most effective polymer.
  • Various methods like spray-drying were used to create different solid dispersions with aceclofenac and Na-CMC, which resulted in nanoparticles with distinct properties such as size and morphology.
  • The study found that the self-nanoemulsifying drug delivery system (SNEDDS) had the best overall performance in enhancing drug solubility and bioavailability, making the nanoparticle screening method a valuable tool for improving other poorly soluble compounds.
View Article and Find Full Text PDF

The therapeutic efficacy of anticancer drugs loaded in liposomes composed of rigid phosphatidylcholine (PC) is hindered by the limited release of these drugs at the tumor site, which in turn hampers delivery of the drug to its intracellular target. In an attempt to improve the therapeutic efficacy of liposomal anticancer drugs, we here explored the use of empty liposomes as "trigger" vehicles to induce drug release from drug-loaded liposomes through liposome-liposome interactions. Empty liposomes containing PC in which omega-3 fatty acids comprised both fatty acid strands (Omega-L) showed a triggering effect on drug release from doxorubicin (DOX)-loaded liposomes (Caelyx).

View Article and Find Full Text PDF

The purpose of this study was to investigate the impact of carrier hydrophilicity on solid self nano-emulsifying drug delivery system (SNEDDS) and self nano-emulsifying granule system (SEGS). The mesoporous calcium silicate (Ca-silicate) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were utilised as hydrophobic carrier and hydrophilic carrier, respectively. The liquid SNEDDS formulation, composed of Tween80/Kollipohr EL/corn oil (35/50/15%) with 31% (w/w) dexibuprofen, was spray-dried and fluid-bed granulated together with Avicel using Ca-silicate or HP- β-CD as a solid carrier, producing four different solid SNEDDS and SEGS formulations.

View Article and Find Full Text PDF

Although 3-aminopropyl functionalized magnesium phyllosilicate nanoparticles (hereafter aminoclay nanoparticles, ACNs) are well-known nanomaterials employed as drug carriers, their effects on immune cells remain unclear. To address this issue, we explored murine dendritic cells (DCs) as these cells belong to the innate arm of the immune system and function as antigen-presenting cells to elicit adaptive immune responses. We examined the in vitro effects of ACNs on DCs isolated from B6 mice.

View Article and Find Full Text PDF

The purpose of the present study was to develop hydroxypropyl-β-cyclodextrin (HP-β-CD)-based solid dispersed granules as a superior system to solid dispersion. The solid dispersed granules and solid dispersion were compared in terms of powder property improvement, solubility increment and oral bioavailability enhancement of poorly water-soluble dexibuprofen. Solid dispersion (drug/HP-β-CD/Tween80 = 1:7:0.

View Article and Find Full Text PDF

Background: The purpose of this study was to screen various drug delivery systems for improving the aqueous solubility and oral bioavailability of sildenafil. Three representative techniques, solid self-nanoemulsifying drug delivery systems (SNEDDS), amorphous microspheres and crystalline microspheres, were compared.

Methods: Both microspheres systems contained sildenafil:Labrasol:PVP at a weight ratio of 1:1:6.

View Article and Find Full Text PDF

The purpose of this study was to use hydroxypropyl-β-cyclodextrin (HP-β-CD) as a novel carrier in solid SNEDDS and solid dispersions to enhance the solubility and oral bioavailability of poorly water-soluble dexibuprofen. The novel dexibuprofen-loaded solid SNEDDS was composed of dexibuprofen, corn oil, polysorbate 80, Cremophor® EL, and HP-β-CD at a weight ratio of 45/35/50/15/100. This solid SNEDDS spontaneously formed a nano-emulsion with a size of approximately 120 nm.

View Article and Find Full Text PDF

Adjuvant CIA09, composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes and the toll-like receptor 4 agonist de--acylated lipooligosaccharide (dLOS), has been shown to enhance antibody and cellular immune responses to varicella-zoster virus (VZV) glycoprotein E (gE), recombinant tuberculosis vaccine antigen, and inactivated Japanese encephalitis vaccine. In this study, we investigated its modes of action using VZV gE as a model antigen. Liposomes adsorbed gE and cooperatively with dLOS promoted endocytosis-mediated cellular uptake of gE by mouse dendritic cells in vitro.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a clinically approved near-infrared dye that has shown promise as a photosensitizer for the phototherapy of cancer. However, its chemical instability in an aqueous solution has limited its clinical application. Encapsulating ICG in liposomes, phosphatidylcholine nanoparticles (PC-NP), has shown partial effectiveness in stabilizing it.

View Article and Find Full Text PDF

Background: Infliximab (IFX), a TNF-α blocking chimeric monoclonal antibody, induces clinical response and mucosal healing in patients with inflammatory bowel disease (IBD). However, systemic administration of this agent causes unwanted side effects. Oral delivery of antibody therapeutics might be an effective treatment strategy for IBD compared to intravenous administration.

View Article and Find Full Text PDF

This study aimed to develop a new colon-targeted drug delivery system via the preparation of ternary nanocomposite carriers based on organic polymer, aminoclay and lipid vesicles. Budesonide (Bud), an anti-inflammatory drug was chosen as a model drug and encapsulated into three different formulations: liposome (Bud-Lip), aminoclay-coated liposome (AC-Bud-Lip), and Eudragit S100-aminoclay double coated liposome (EAC-Bud-Lip). The formation of the aminoclay-lipid vesicle nanocomposite was confirmed by energy dispersive X-ray spectrum, transmission electron microscopy, and Fourier-transform infrared spectroscopy.

View Article and Find Full Text PDF

Background: Phosphatidylcholine (PC) and Omega-3 fatty acid (Omega-3) are promising therapeutic molecules for treating inflammatory bowel disease (IBD).

Purpose: Based on the IBD therapeutic potential of nanoparticles, we herein sought to develop Omega-3-incorporated PC nanoparticles (liposomes) as an orally administrable vehicle for treating IBD.

Methods: Liposomes prepared with or without Omega-3 incorporation were compared in terms of colloidal stability and anitiinflammatory effects.

View Article and Find Full Text PDF

Restricted drug entry to the brain that is closely associated with the existence of the blood brain barrier (BBB) has limited the accessibility of most potential active therapeutic compounds to the brain from the systemic circulation. Recently, evidences for the presence of direct nose-to-brain drug transport pathways have been accumulated by several studies and an intranasal drug administration route has gained attention as a promising way for providing direct access to the brain without the needs to cross to the BBB. Studies aiming for developing nanoparticles as an intranasal drug carrier have shown considerable promise in overcoming the challenges of intranasal drug delivery route.

View Article and Find Full Text PDF

Indocyanine green (ICG) has been used clinically and noticed as a promising candidate for the topical melanoma photodynamic therapy (PDT). Despite its high potentials in topical PDT, the use of ICG has been hampered by the instability in aqueous solution. In the present study, chitosan-coated liposomes were adopted as a formulation strategy which could stabilize and enhance skin permeation of ICG.

View Article and Find Full Text PDF

The main objective of this study was to compare the powder property, dissolution and bioavailability of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG)-loaded self-emulsifying granule system (SEGS) and solid self-nanoemulsifying drug delivery system (SNEDDS). Various SEGS formulations were prepared, and the effect of surfactant and binder on the drug solubility in them, leading to selecting sodium lauryl sulphate (SLS) and hydroxyl propyl methyl cellulose (HPMC). The SEGS and SNEDDS were prepared with PLAG/SLS/HPMC/calcium silicate/microcrystalline cellulose at the weight ratio of 1:0.

View Article and Find Full Text PDF

Varicella zoster virus (VZV) is a neurotropic and lymphotropic alpha herpesvirus that causes varicella and herpes zoster (HZ). At a primary infection, VZV causes varicella in young children. Reactivation of latent VZV in sensory ganglia causes painful HZ in elderly people, occasionally leading to a serious complication, postherpetic neuralgia (PHN).

View Article and Find Full Text PDF

Liposome, phosphatidylcholine nanoparticle (PC-NP), is an attractive colloidal carrier of hydrophobic drugs but its clinical development is often limited by low drug-loading capacity and the physical instability. Zein is a water-insoluble amphiphilic protein obtained from the corn. We herein investigated a possibility to develop zein-phosphatidylcholine hybrid nanoparticle (Z/PC-NP) as an advanced hydrophobic drug carrier.

View Article and Find Full Text PDF

A polyphasic taxonomic study was performed on a novel strain designated as S7-3-11, which was isolated from soil of the Gyeongsangnam-do province in Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S7-3-11 belongs to the genus Hymenobacter and is most closely related to Hymenobacter ruber PB156 (97.9%), Hymenobacter daeguensis 16F3Y-2 (97.

View Article and Find Full Text PDF

Strain S12-2-1 was isolated from a soil sample collected in the Gyeongsangnam-do province of the Republic of Korea. The isolate is a Gram-stain-negative, aerobic, short, rod-shaped bacterium, and its colonies are red to pink in colour. Analysis of the 16S rRNA gene identified strain S12-2-1 as a member of the genus Hymenobacter in the family Cytophagaceae, with high levels of 16S rRNA gene sequence similarity to Hymenobacter arizonensis OR362-8 (97.

View Article and Find Full Text PDF

The aim of this research was to compare three strategies for enhancing the solubility of poorly water-soluble revaprazan hydrochloride: solid dispersion, solid SNEDDS and inclusion compound. The influence of polymers, surfactants and oils on the drug solubility was assessed, and via the chosen carriers, the three types of formulations were prepared utilising spray drying technique. Their physicochemical properties, solubility, dissolution and pharmacokinetics in rats were performed compared with revaprazan powder.

View Article and Find Full Text PDF

In a previous report, 3-aminopropyl functionalized magnesium phyllosilicate (aminoclay) improved adenovirus transduction efficiency by shielding the negative surface charges of adenovirus particles. The present study analyzed the physicochemical characterization of the electrostatic complex of adenoviruses with aminoclay and explored whether it could be utilized for enhancing tumor suppressive activity in the bladder. As a result of aminoclay-adenovirus nanobiohybridization, its transduction was enhanced in a dose-dependent manner, increasing transgene expression in bladder cancer cells and in in vivo animal models.

View Article and Find Full Text PDF

Adjuvants are essential vaccine components used to enhance, accelerate, and/or prolong adaptive immunity against specific vaccine antigens. In this study, we compared the adjuvanticity of two adjuvant formulations containing de-O-acylated lipooligosaccharide (dLOS), a toll-like receptor 4 agonist, on the Japanese encephalitis (JE) vaccine in mice. Mice were immunized once or twice at a two-week interval with inactivated JE vaccine in the absence or presence of adjuvant.

View Article and Find Full Text PDF

Cationic lipid-based nanoparticles enhance viral gene transfer by forming electrostatic complexes with adenoviral vectors. We recently demonstrated the superior complexation capabilities of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) emulsion compared with a liposomal counterpart but the cytotoxicity of DOTAP emulsions remained a challenge. The present study is aimed at formulating an emulsion capable of acting as a highly effective viral gene transfer vehicle with reduced cytotoxicity and to physicochemically characterize the structures of virus-emulsion complexes in comparison with virus-liposome complexes when the only difference between emulsions and liposomes was the presence or absence of inner oil core.

View Article and Find Full Text PDF

Studies have shown that insertion of oleic acid into lipid bilayers can modulate the membrane properties of liposomes so as to improve their function as drug carriers. Considering that 2-hydroxyoleic acid (2OHOA), a potential antitumor agent currently undergoing clinical trials, is a derivative of oleic acid, we explored the possibility of developing 2OHOA-inserted liposomes as a multifunctional carrier of antitumor drugs in the present study. The insertion of 2OHOA into lipid bilayers was confirmed by surface charge determination and differential scanning calorimetry.

View Article and Find Full Text PDF