Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to investigate the impact of carrier hydrophilicity on solid self nano-emulsifying drug delivery system (SNEDDS) and self nano-emulsifying granule system (SEGS). The mesoporous calcium silicate (Ca-silicate) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were utilised as hydrophobic carrier and hydrophilic carrier, respectively. The liquid SNEDDS formulation, composed of Tween80/Kollipohr EL/corn oil (35/50/15%) with 31% (w/w) dexibuprofen, was spray-dried and fluid-bed granulated together with Avicel using Ca-silicate or HP- β-CD as a solid carrier, producing four different solid SNEDDS and SEGS formulations. Unlike the Ca-silicate-based systems, spherical shape and aggregated particles were shown in HP-β-CD-based solid SNEDDS and SEGS, respectively. Molecular interaction was detected between Ca-silicate and the drug; though, none was shown between HP-β-CD and the drug. Each system prepared with either carrier gave no significant differences in micromeritic properties, crystallinity, droplet morphology, size, dissolution and oral bioavailability in rats. However, the HP-β-CD-based system more significantly improved the drug solubility than did the Ca-silicate-based system. Therefore, both carriers hardly affected the properties of both solid SNEDDS and SEGS; though, there were differences in the aspect of appearance, molecular interaction and solubility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123578DOI Listing

Publication Analysis

Top Keywords

solid snedds
12
snedds segs
12
impact carrier
8
carrier hydrophilicity
8
hydrophilicity solid
8
solid nano-emulsifying
8
nano-emulsifying drug
8
drug delivery
8
delivery system
8
nano-emulsifying granule
8

Similar Publications

This study developed a hydroxypropyl methylcellulose acetate succinate (HPMCAS)-functionalized supersaturated self-nanoemulsifying drug delivery system (HPMCAS-SNEDDS@BA) to address the poor solubility and bioavailability of baicalin (BA), a flavonoid with anti-colitis efficacy. The formulation was systematically optimized through solubility screening, emulsification efficiency evaluation, and pseudo-ternary phase diagram analysis. Central composite design-response surface methodology (CCD-RSM) was employed to identify the optimal SNEDDS@BA composition, followed by HPMCAS ratio optimization based on supersaturation maintenance in biorelevant media.

View Article and Find Full Text PDF

Abiraterone acetate (ABT) is an androgen biosynthesis inhibitor approved for the treatment of prostate cancer. However, the treatment course of ABT is constrained by its high dose, poor solubility and permeability issues. A solid supersaturated self-nanoemulsifying drug delivery system (ssSNEDDS) is an excellent approach for improving drug loading.

View Article and Find Full Text PDF

The main purpose of this study was to design and develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) for the oral administration of benidipine (BD) and telmisartan (TEL) using the adsorption method with eucalyptus oil, Transcutol P, and Kolliphor EL via the Box-Behnken design approach. The prepared SNEDDS formulations were characterized using FTIR, DSC, SEM, and PXRD techniques and evaluated for zeta potential, refractive index, drug concentration, resistance to dilution, viscosity, and thermodynamic stability. Additionally, and stability studies were conducted.

View Article and Find Full Text PDF

Purpose: The inherent chemical instability of ramipril (RMP) can lead to reduced therapeutic efficacy and safety, emphasizing the need for innovative formulation strategies for increased stability and bioavailability. This study aims to develop RMP-loaded liquid and solid self-nanoemulsifying formulations (SNEDDSs) that incorporate cardioprotective black seed oil (BSO) as a natural source of bioactive thymoquinone (THQ) for comprehensive chemical stability and pharmacokinetic evaluation.

Methods: A systematic approach was employed to transform liquid SNEDDSs into both single-layer (Single-SNEPs) and multilayer (Multi-SNEPs) self-nanoemulsifying pellets through fluid bed coating technology.

View Article and Find Full Text PDF

This study aims to develop novel modified drug delivery systems (MDDS) including solid dispersions, solid self-nanoemulsifying drug delivery system (S-SNEDDS) and inclusion compound (IC) of poorly water-soluble tadalafil using various biological macromolecules and compare their ability to improve solubility, dissolution and bioavailability. Ingredients of MDDS were extensively screened using SEM, DSC, and XRD. The MDDS were testified for improved solubilization, dissolution, and bioavailability and were compared with tadalafil powder and commercial product (Cialis tablets 20 mg).

View Article and Find Full Text PDF