Publications by authors named "Chul Soon Yong"

Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic--glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice.

View Article and Find Full Text PDF

The significant advances in nano-drug delivery systems (NDDS) for anticancer agents have led to the development of computational techniques, such as machine learning and neural networks to identify the optimal architectural and compositional design in a wide variety of therapeutic nanoformulations. On the other hand, few studies have examined downsized plug-in reaction-ware embodied in an autonomous platform for the instant reconfigurable production of engineered nanomaterials to guide optimal NDDS designs and delivery strategies. This paper describes an on-demand system for an electrically operable, continuously processible material produced by sequential spray pyrolysis and vibrating spray for single-pass NDDS assembly.

View Article and Find Full Text PDF
Article Synopsis
  • CD47 and signal-regulatory protein α help cancer cells evade destruction by macrophages, highlighting their importance in cancer progression.
  • Modified nanoparticle technology was used to create a CD47-conjugated human serum albumin nanosystem that effectively delivers the chemotherapy drug dabrafenib (D) specifically to tumors in acidic environments.
  • The combination of the targeted nanoconstruct with PD-1 antibodies enhanced immune response and tumor suppression without noticeable toxicity, suggesting a promising strategy for cancer treatment through immunomodulation.
View Article and Find Full Text PDF

Despite the significant efforts in developing cancer vaccines, there are still numerous challenges that need to be addressed to ensure their clinical efficacy. Herein, a lymphatic dendritic cell (DC)-targeted artificial nanovaccine mimicking tumor cell membrane (ATM-NV) is developed to boost effector immune response and control immunosuppression simultaneously. The NVs are formulated with lipids, tumor cell membrane proteins, imiquimod (IMQ), and IL-10 siRNA.

View Article and Find Full Text PDF

Anticancer regimens have been substantially enriched through monoclonal antibodies targeting immune checkpoints, programmed cell death-1/programmed cell death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte antigen-4. Inconsistent clinical efficacy after solo immunotherapy may be compensated by nanotechnology-driven combination therapy. We loaded human serum albumin (HSA) nanoparticles with paclitaxel (PTX) via nanoparticle albumin-bound technology and pooled them with anti-PD-L1 monoclonal antibody through a pH-sensitive linker for targeting and immune response activation.

View Article and Find Full Text PDF

Pancreatic islet replacement therapy is an advanced choice for severe cases of type I diabetes. Nevertheless, extensive host immune response toward islet grafts remains a huge challenge for long-term graft function, and a lack of islet donors further increases the difficulties associated with upscaling this therapy. Mounting evidence suggests local delivery of immunosuppressive agents provides a feasible means of enhancing graft-protection.

View Article and Find Full Text PDF

Background: Traditionally, nanoparticles for biomedical applications have been produced via the classical wet chemistry method, with size control remaining a major problem in drug delivery. In recent years, advances in aerosol-based technologies have led to the development of methods that enable the production of nanosized particles and have opened up new opportunities in the field of nano-drug delivery and biomedicine. Aerosol-based technologies have been constantly used to synthesize multifunctional nanoparticles with different properties, which extends their possible biological and medicinal applications.

View Article and Find Full Text PDF

Cellular FLIP (cFLIP) is a crucial player of apoptosis-regulated pathways that is frequently overexpressed in solid cancers. To inhibit c-FLIP, pre- and post-transcriptionally, a multifunctional nanoparticle (NP) was created to deliver cFLIP-specific small interfering RNA (siRNA) into cancer cells. Specifically, Vorinostat (Vor)-loaded mesoporous silica nanoparticles (MSN) were conjugated with polyethylenimine-biotin (PB), followed by electrostatically binding with cFLIP siRNA (Vor/siR@MSN-PB).

View Article and Find Full Text PDF
Article Synopsis
  • Senescent cells are key contributors to atherosclerosis and cardiovascular disease, but their specific markers are not well understood, hindering effective treatments.
  • Recent findings have identified CD9 as a promoter of cellular senescence that worsens plaque formation in a specific mouse model (ApoE knockout mice).
  • The study developed a new drug delivery system using CD9 antibody-modified nanoparticles that effectively target senescent cells, improve cell health, and reduce atherosclerosis progression by administering the anti-senescence drug rosuvastatin directly to affected areas.
View Article and Find Full Text PDF

Targeted and stimuli-sensitive nanobombs for the release of therapeutic agents after laser irradiation of the tumor site are gaining widespread attention as personalized anticancer regimens. In this study, redox and photo dual-responsive, folate receptor-targeted nanourchin carriers for chemo-, photodynamic, and photothermal therapy were constructed by the amalgamation of an outer layer of polyethylene glycol (PEG)-S-S-methotrexate (MTX) and an inner core of indocyanine green (ICG)-loaded bismuth sulfide (Bi2S3) nanoparticles for cancer treatment. MTX introduces the carrier to folate receptors resulting in the internalization of nanoparticles into cancer cells, specifically and increasingly.

View Article and Find Full Text PDF

The consolidation of nanovectors with biological membranes has recently been a subject of interest owing to the prolonged systemic circulation time and delayed clearance by the reticuloendothelial system of such systems. Among the different biomembranes, the macrophage membrane has a similar systemic circulation time, with an additional chemotactic aptitude, targeting integrin proteins. In this study, we aimed to establish a laser-activated, disintegrable, and deeply tumor-penetrative nanoplatform.

View Article and Find Full Text PDF

Recent studies emphasize on developing immune tolerance by an interim administration of various immunosuppressive drugs. In this study, a robust protocol is reported for local immunomodulation using a single-dose of FK506 microspheres and clodronate liposomes (mFK+CLO) in a xenogeneic model of islet transplantation. Surprisingly, the single-dose treatment with mFK+CLO induce tolerance to the islet xenograft.

View Article and Find Full Text PDF

Accumulating clinical data shows that less than half of patients are beneficial from PD-1/PD-L1 blockage therapy owing to the limited infiltration of effector immune cells into the tumor and abundant of the immunosuppressive factors in the tumor microenvironment. In this study, PD-L1 inhibition therapy and BRAF-targeted therapy, which showed clinical benefit, were combined in a CXCR4-targeted nanoparticle co-delivering dabrafenib (Dab), a BRAF inhibitor, and miR-200c which can down-regulate PD-L1 expression. The cationic PCL-PEI core containing Dab- and miR-200c- were coated with poly-L-glutamic acid conjugated with LY2510924, a CXCR-4 antagonist peptide, (PGA-pep) to obtain miR@PCL-PEI/Dab@PGA-pep nanoformulation.

View Article and Find Full Text PDF
Article Synopsis
  • * The nanoconstruct, made from copper sulfide (CuS), graphene oxide (GO), and doxorubicin (DOX), shows responsive drug release and improved photothermal activity for combined chemo-phototherapy.
  • * In vivo studies indicate that the nanoconstruct accumulates effectively in tumors, leading to significant tumor growth inhibition and altered levels of key biological markers related to cancer progression, highlighting its promise for future clinical applications.
View Article and Find Full Text PDF

Background: Conventional therapeutic approaches for tumor angiogenesis, which are primarily focused on the inhibition of active angiogenesis to starve cancerous cells, target the vascular endothelial growth factor signaling pathway. This aggravates hypoxia within the tumor core and ultimately leads to increased tumor proliferation and metastasis. To overcome this limitation, we developed nanoparticles with antiseptic activity that target tumor vascular abnormalities.

View Article and Find Full Text PDF

As well as the exploration of translatable delivery nanosystems for cancer therapeutic agents, the development of automatable continuous-flow manufacturing technology comprising digitally controlled reactions for the on-demand production of pharmaceuticals is an important challenge in anticancer nanomedicine. Most attempts to resolve these issues have involved the development of alternative reactions, formulations, or constructs containing stimulus components aimed at producing multiple approaches for highly efficacious combination cancer therapies. However, there has been no report of a platform based on plug-in execution that enables continuous-flow manufacture in a compact, reconfigurable manner, although an optimal platform technology may be a prerequisite for the timely translation of recently developed nanomedicines.

View Article and Find Full Text PDF
Article Synopsis
  • * A new strategy involves creating engineered exosomes that target T cells and stimulate their response against tumors while blocking inhibitory factors.
  • * The developed bifunctional exosomes (EXO-OVA-mAb) enhance T-cell binding and activation, leading to significant tumor growth inhibition by improving the balance of effector T cells to regulatory T cells in tumors.
View Article and Find Full Text PDF

Purpose: The goal of this study was to develop chemotherapeutic drug-loaded photoactivable stealth polymer-coated silica based- mesoporous titania nanoplatforms for enhanced antitumor activity.

Methods: Both in vitro and in vivo models of solvothermal treated photoactivable nanoplatforms were evaluated for efficient chemo-photothermal activity. A versatile nanocomposite that combined silica based- mesoporous titania nanocarriers (S-MTN) with the promising photoactivable agent, graphene oxide (G) modified with a stealth polymer (P) was fabricated to deliver chemotherapeutic agent, imatinib (I), (referred as S-MTN@IG-P) for near-infrared (NIR)-triggered drug delivery and enhanced chemo-photothermal therapy.

View Article and Find Full Text PDF

Purpose: Development of a nanoplatform constructed by the PEG-dual drug conjugation for co-delivery of paclitaxel (PTX) and Dihydroartemisinin (DHA) to the tumor.

Methods: PEG was conjugated with PTX and DHA to form PTX-PEG-DHA complex as a nanocarrier. The PTX and DHA were co-encapsulated in PTX-PEG-DHA nanoparticles (PD@PPD NPs) by the emulsion evaporation method.

View Article and Find Full Text PDF

Hypoxia is a common feature of the tumor microenvironment, which is characterized by tissue oxygen deficiency due to an aggressive proliferation of cancer cells. Hypoxia activates hypoxia-inducible factor-dependent signaling, which in turn regulates metabolic reprogramming, immune suppression, resistance to apoptosis, angiogenesis, metastasis, and invasion to secondary sites. In this review, we provide an overview of the use of nanotechnology to harmonize intra-tumoral oxygen or suppress hypoxia-related signaling for an improved efficacy of cancer treatment.

View Article and Find Full Text PDF

The hindrances in achieving clinically translatable anticancer platforms are being tackled through nanotechnology-based formulations. In this study, stimuli-responsive, phytoactive constituent-loaded nanophytoliposomes were fabricated for designing a specific antitumor platform. Ursolic acid (UA)-loaded nanophytoliposomes (UA-PLL-HA.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer immunotherapies are being researched for their ability to enhance treatment effectiveness and reduce side effects compared to traditional cancer therapies.
  • This study introduces a new method using air-liquid two-phase electrospray to create biomimetic nanosystems made with clinically relevant compounds for better delivery of cancer drugs.
  • The developed nanosystems, specifically paclitaxel-loaded, show improved efficacy due to their unique shape, which enhances their transport and interaction with cells, outperforming similar-sized spherical particles with or without immunotherapy agents.
View Article and Find Full Text PDF

Folate-targeting self-assembled nanoparticles (NPs) using biocompatible and biodegradable natural polymers chitosan (Cs) and chondroitin sulfate (Chs) were developed to address the major challenge in cancer treatment, the selective delivery of nanoparticles to the target site. In this study, we successfully incorporated a hydrophobic drug, bortezomib (Bor), into folic acid (FA)-conjugated Cs/Chs self-assembled NPs (Bor/Cs/Chs-FA) for colorectal cancer therapy. The particle size and polydispersity index of Bor/Cs/Chs-FA were ∼196.

View Article and Find Full Text PDF

Clinical intraportal pancreatic islet infusion is popular for treating type I diabetes. However, multiple doses of islets and anti-rejection protocols are needed to compensate for early large cell losses post-infusion due to the harsh hepatic environment. Thus, extrahepatic sites are utilized to enable efficient islet engraftment and reduce islet mass.

View Article and Find Full Text PDF