98%
921
2 minutes
20
Environmental omics and molecular-biological data have been proposed to yield improved quantitative predictions of biogeochemical processes. The abundances of functional genes and transcripts relate to the number of cells and activity of microorganisms. However, whether molecular-biological data can be quantitatively linked to reaction rates remains an open question. We present an enzyme-based denitrification model that simulates concentrations of transcription factors, functional-gene transcripts, enzymes, and solutes. We calibrated the model using experimental data from a well-controlled batch experiment with the denitrifier . The model accurately predicts denitrification rates and measured transcript dynamics. The relationship between simulated transcript concentrations and reaction rates exhibits strong non-linearity and hysteresis related to the faster dynamics of gene transcription and substrate consumption, relative to enzyme production and decay. Hence, assuming a unique relationship between transcript-to-gene ratios and reaction rates, as frequently suggested, may be an erroneous simplification. Comparing model results of our enzyme-based model to those of a classical Monod-type model reveals that both formulations perform equally well with respect to nitrogen species, indicating only a low benefit of integrating molecular-biological data for estimating denitrification rates. Nonetheless, the enzyme-based model is a valuable tool to improve our mechanistic understanding of the relationship between biomolecular quantities and reaction rates. Furthermore, our results highlight that both enzyme kinetics (i.e., substrate limitation and inhibition) and gene expression or enzyme dynamics are important controls on denitrification rates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8250433 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.684146 | DOI Listing |
Environ Technol
September 2025
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.
To explore strategies for further reducing aeration energy consumption in the simultaneous nitrification and denitrification (SND) process, an SND reactor was constructed to treat low carbon-to-nitrogen (C/N) ratio domestic wastewater under ultra-low dissolved oxygen (DO) conditions (DO < 0.05 mg·L⁻). The effects of hydraulic retention time (HRT) and C/N ratio on nitrogen removal performance were systematically evaluated, and batch experiments were conducted to determine nitrification and denitrification rates.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.
View Article and Find Full Text PDFWater Res
August 2025
Key Laboratory of SFGA (SPA) on Conservation Ecology in the Northeast Tiger and Leopard National park & Jilin Provincial Key Laboratory of Wetland Ecological Functions and Ecological Security, College of Geography and Ocean Sciences, Yanbian University, Yanji, 133300, China.
Snowpack variations in cold regions exert profound influences on the ecological functioning of constructed wetlands (CWs), particularly with respect to GHG emissions and nutrient removal. However, the underlying mechanisms have yet to be clarified. This study established pilot-scale vertical subsurface flow CWs in Northeast China, with Phragmites australis and Iris sibirica, and applied doubled snowpack (DS) and natural snow cover (CK) during winter.
View Article and Find Full Text PDFBioresour Technol
August 2025
Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
Poor microbial and plant activities in constructed wetlands (CWs) in winter reduced nitrogen removal substantially. A novel low-temperature tolerant heterotrophic nitrification-aerobic denitrification (HN-AD) strain of Pseudomonas umsongensis YL-1, isolated from the rhizosphere of wetland plants, was periodically inoculated into CWs to improve the efficiency of winter nitrogen removal. The removal rates of NH-N and TN in CWs planted with Iris japonica and Lolium perenne L.
View Article and Find Full Text PDFMicroorganisms
August 2025
School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
In this study, the distribution patterns of the nitrifying and denitrifying microbiome in a large-scale biofilter (587.24 m) in a cold freshwater recirculating aquaculture system (RAS) was investigated. Previous studies have revealed that the water quality, nitrification, and denitrification rates in the front (BFF), middle (BFM), and back (BFB) of this biofilter are different.
View Article and Find Full Text PDF