Column-leaching tests are a common approach for assessing the leaching behavior and resulting environmental risks of contaminated soils and waste materials, which are frequently reused for various construction purposes. The observed breakthrough curves of the contaminants are influenced by the complex dynamics of solute transport and kinetic inter-phase mass transfer. Disentangling these interactions necessitates numerical models.
View Article and Find Full Text PDFCompound-specific isotope analysis (CSIA) can reveal mass-transfer limitations during biodegradation of organic pollutants by enabling the detection of masked isotope fractionation. Here, we applied CSIA to monitor the adaptive response of bacterial degradation in inoculated sediment to low contaminant concentrations over time. We characterized sp.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2021
The evolution of groundwater quality in natural and contaminated aquifers is affected by complex interactions between physical transport and biogeochemical reactions. Identifying and quantifying the processes that control the overall system behavior is the key driver for experimentation and monitoring. However, we argue that, in contrast to other disciplines in earth sciences, process-based computer models are currently vastly underutilized in the quest for understanding subsurface biogeochemistry.
View Article and Find Full Text PDFEnvironmental omics and molecular-biological data have been proposed to yield improved quantitative predictions of biogeochemical processes. The abundances of functional genes and transcripts relate to the number of cells and activity of microorganisms. However, whether molecular-biological data can be quantitatively linked to reaction rates remains an open question.
View Article and Find Full Text PDFMagnetite nanoparticles are promising materials for treating toxic Cr(VI), but safe handling is challenging due to their small size. We prepared flow-through columns containing 10% or 100% (v/v) magnetite-coated sand. Cr(VI) removal efficiency was determined for different Cr(VI) concentrations (0.
View Article and Find Full Text PDFOrganic contaminant degradation by suspended bacteria in chemostats has shown that isotope fractionation decreases dramatically when pollutant concentrations fall below the (half-saturation) Monod constant. This masked isotope fractionation implies that membrane transfer is slow relative to the enzyme turnover at μg L substrate levels. Analogous evidence of mass transfer as a bottleneck for biodegradation in aquifer settings, where microbes are attached to the sediment, is lacking.
View Article and Find Full Text PDFDetermining whether aqueous diffusion and dispersion lead to significant isotope fractionation is important for interpreting the isotope ratios of organic contaminants in groundwater. We performed diffusion experiments with modified Stokes diaphragm cells and transverse-dispersion experiments in quasi-two-dimensional flow-through sediment tank systems to explore isotope fractionation for benzene, toluene, ethylbenzene, 2,6-dichlorobenzamide, and metolachlor at natural isotopic abundance. We observed very small to negligible diffusion- and transverse-dispersion-induced isotope enrichment factors (ε < -0.
View Article and Find Full Text PDFNumerous experimental studies have identified a multi-step reaction mechanism to control arsenite (As(III)) oxidation by manganese (Mn) oxides. The studies highlighted the importance of edge sites and intermediate processes, e.g.
View Article and Find Full Text PDFEnviron Sci Technol
April 2020
Redox-active organic molecules such as anthraquinone-2,6-disulfonate (AQDS) and natural organic matter (NOM) can act as electron shuttles thus facilitating electron transfer from Fe(III)-reducing bacteria (FeRB) to terminal electron acceptors such as Fe(III) minerals. In this research, we examined the length scale over which this electron shuttling can occur. We present results from agar-solidified experimental incubations, containing either AQDS or NOM, where FeRB were physically separated from ferrihydrite or goethite by 2 cm.
View Article and Find Full Text PDFEnviron Sci Technol
August 2019
While they are theoretically conceptualized to restrict biodegradation of organic contaminants, bioavailability limitations are challenging to observe directly. Here we explore the onset of mass transfer limitations during slow biodegradation of the polycyclic aromatic hydrocarbon 2-methylnaphthalene (2-MN) by the anaerobic, sulfate-reducing strain NaphS2. Carbon and hydrogen compound specific isotope fractionation was pronounced at high aqueous 2-MN concentrations (60 μM) (ε = -2.
View Article and Find Full Text PDFEnviron Toxicol Chem
August 2019
Microplastic particles are ubiquitously detected in the environment. Despite intensive public and scientific discussions, their potential to transport contaminants in rivers and oceans under environmental conditions is still under assessment. In the present study we measured sorption isotherms and kinetics in batch experiments using phenanthrene (as a typical hydrophobic wastewater contaminant) and microplastic particles of different sizes and materials.
View Article and Find Full Text PDFSci Total Environ
June 2019
Polycyclic Aromatic Hydrocarbons (PAH) ubiquitously occur in rivers and threaten the aquatic ecosystem. Understanding their fate and behaviour in rivers can help in improving management strategies. We develop a particle-facilitated transport model considering suspended sediments with sorbed PAH from different origins to investigate the turnover and legacy of sediment-bound PAH in the baseflow-dominated Ammer River in southwest Germany.
View Article and Find Full Text PDFNumerical models for reactive transport can be used to estimate the breakthrough of a contaminant in a pumping well or at other receptors. However, as natural aquifers are highly heterogeneous with unknown spatial details, reactive transport predictions on the aquifer scale require a stochastic framework for uncertainty analysis. The high computational demand of spatially explicit reactive-transport models hampers such analysis, thus motivating the search for simplified estimation tools.
View Article and Find Full Text PDFInterpreting the fate of wastewater contaminants in streams is difficult because their inputs vary in time and several processes synchronously affect reactive transport. We present a method to disentangle the various influences by performing a conservative-tracer test while sampling a stream section at various locations for chemical analysis of micropollutants. By comparing the outflow concentrations of contaminants with the tracer signal convoluted by the inflow time series, we estimated reaction rate coefficients and calculated the contaminant removal along a river section.
View Article and Find Full Text PDFThe estimation of gas-exchange rates between streams and the atmosphere is of great importance for the fate of volatile compounds in rivers. For dissolved oxygen, this exchange process is called reaeration, and its accurate and precise estimation is essential for the quantification of metabolic rates. A common method for the determination of gas-exchange rates is through artificial gas-tracer tests with a proxy gas.
View Article and Find Full Text PDFEnviron Sci Technol
February 2019
We present a framework to model microbial transformations in chemostats and retentostats under transient or quasi-steady state conditions. The model accounts for transformation-induced isotope fractionation and mass-transfer across the cell membrane. It also verifies that the isotope fractionation ϵ can be evaluated as the difference of substrate-specific isotope ratios between inflow and outflow.
View Article and Find Full Text PDFSorption to the polystyrene (PS) of multiwell plates can affect the exposure to organic chemicals over time in in vitro and in vivo bioassays. Experimentally determined diffusion coefficients in PS ( D) were in a narrow range of 1.25 to 8.
View Article and Find Full Text PDFThe spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface-the Hydrogeological Virtual Realities (HyVR) simulation package.
View Article and Find Full Text PDFAromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don't represent conditions in the field.
View Article and Find Full Text PDFEnviron Sci Technol
November 2017
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion.
View Article and Find Full Text PDFEnviron Sci Process Impacts
October 2017
We studied the effects of two percent by weight activated carbon versus biochar amendments in 93 cm long sand columns on the biofiltration of petroleum vapours released by a non-aqueous phase liquid (NAPL) source. Activated carbon greatly enhanced, whereas biochar slightly reduced, the biofiltration of volatile petroleum hydrocarbons (VPHs) over 430 days. Sorbent amendment benefitted the VPH biofiltration by retarding breakthrough during the biodegradation lag phase.
View Article and Find Full Text PDFN-Nitrosodimethylamine (NDMA) is a carcinogenic disinfection byproduct from water chloramination. Despite the identification of numerous NDMA precursors, essential parts of the reaction mechanism such as the incorporation of molecular O are poorly understood. In laboratory model systems for the chloramination of secondary and tertiary amines, we investigated the kinetics of precursor disappearance and NDMA formation, quantified the stoichiometries of monochloramine (NHCl) and aqueous O consumption, derived O-kinetic isotope effects (O-KIE) for the reactions of aqueous O, and studied the impact of radical scavengers on NDMA formation.
View Article and Find Full Text PDFPlume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows.
View Article and Find Full Text PDFTransport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time.
View Article and Find Full Text PDF