Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ecosystem services provided by coral reefs may be susceptible to the combined effects of benthic species shifts and anthropogenic nutrient pollution, but related field studies are scarce. We thus investigated in situ how dissolved inorganic nutrient enrichment, maintained for two months, affected community-wide biogeochemical functions of intact coral- and degraded algae-dominated reef patches in the central Red Sea. Results from benthic chamber incubations revealed 87% increased gross productivity and a shift from net calcification to dissolution in algae-dominated communities after nutrient enrichment, but the same processes were unaffected by nutrients in neighboring coral communities. Both community types changed from net dissolved organic nitrogen sinks to sources, but the increase in net release was 56% higher in algae-dominated communities. Nutrient pollution may, thus, amplify the effects of community shifts on key ecosystem services of coral reefs, possibly leading to a loss of structurally complex habitats with carbonate dissolution and altered nutrient recycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112444DOI Listing

Publication Analysis

Top Keywords

nutrient pollution
12
ecosystem services
8
coral reefs
8
nutrient enrichment
8
algae-dominated communities
8
communities nutrient
8
nutrient
6
pollution enhances
4
enhances productivity
4
productivity framework
4

Similar Publications

Cadmium accumulation in different types of vegetable across China: Dietary exposure risk, and a novel method for determining soil cadmium thresholds.

J Hazard Mater

September 2025

State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

Cadmium (Cd) contamination in vegetables poses a potential risk to human health; thus an accurate soil Cd threshold is crucial for early warning to ensure safe production. In this study, a national-scale dataset of Cd contents in agricultural soils and vegetables in China was compiled to assess the dietary exposure risk, and a hybrid approach combining conditional inference trees (CITs) and species sensitivity distribution (SSD) was established to derive soil Cd thresholds. The results showed that amaranth, butterhead lettuce, Chinese cabbage, coriander, and garlic had higher Cd accumulation ability among 34 species studied.

View Article and Find Full Text PDF

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

Self-regulating adaptability of biofilm microbiomes enhances manganese and ammonia removal in microbial electrochemical filters under dioxane exposure.

J Hazard Mater

September 2025

State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Understanding the stability and assemblage of biofilm microbiomes under oligotrophic conditions is critical for improving groundwater bioremediation. In this study, a novel microbial electrochemical filter (MEF) was developed to explore the impact of weak electrical stimulation on functional adaptability of biofilms under oligotrophic and 1,4-dioxane exposure conditions. Under 20 mg/L 1,4-dioxane stress, the MEF achieved 94.

View Article and Find Full Text PDF

Spatial distribution of cadmium and mineral nutrients in grains of low- and high-cadmium accumulating Rice cultivars by laser ablation ICP-MS.

Food Chem

August 2025

College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China. Electronic addres

This study investigated the spatial distribution of Cd and mineral nutrients (Mg, P, K, Ca, Mn, Fe, Cu, Zn) in rice grains from low-Cd accumulating (LA) and high-Cd accumulating (HA) cultivars using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Cd concentrations were significantly higher in HA than LA cultivars across polished rice, brown rice, and husks. Spatial mapping demonstrated Cd was distributed in the outer endosperm/embryo of LA grains, but preferentially enriched in the embryo and aleurone layer of HA grains.

View Article and Find Full Text PDF

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF