98%
921
2 minutes
20
The slow redox kinetics during cycling process and the serious shuttle effect caused by the solubility of lithium polysulfides (LiPSs) dramatically hinder the practical application of Li-S batteries. Herein, a facile and scalable spray-drying strategy is presented to construct conductive polar Mo C quantum dots-decorated carbon nanotube (CNT) networks (MCN) as an efficient absorbent and electrocatalyst for Li-S batteries. The results reveal that the MCN/S electrode exhibits a high specific capacity of 1303.3 mAh g at 0.2 C, and ultrastable cycling stability with decay of 0.019% per cycle even at 1 C. Theoretical simulation uncovers that Mo C exhibits much stronger binding energies for S and Li S . The energy barrier for the conversion between Li S and Li S decreases from 1.02 to 0.72 eV when hybriding with Mo C. Furthermore, in situ discharge/charge-dependent Raman spectroscopy shows that long-chain Li S configuration is generated via S ring opening near the first plateaus at ≈2.36 V versus Li/Li and the S configuration in CNT/S electrode is maintained below the potential of ≈2.30 V versus Li/Li , indicating that the shuttle of soluble LiPSs happens during the whole discharge process. This work provides deep insights into the polar nanoarchitecture design and scalable fabrication for advanced Li-S batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202100460 | DOI Listing |
Chem Sci
September 2025
School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China
To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.
View Article and Find Full Text PDFNano Lett
September 2025
Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.
The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.
View Article and Find Full Text PDF