Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME) and dampen the immune response, negatively affecting patient survival. Therefore, targeting TAMs could address the limitations of current cancer treatments. However, drug development in this area remains limited.
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitors (ICIs) have shown limited success in glioblastoma due to the tumor's profoundly immunosuppressive microenvironment. Tumor treating fields (TTFields), a non-invasive electric field therapy, activate the type I interferon (T1IFN) pathway via DNA sensor-dependent inflammasomes, promoting in situ immunization against glioblastoma.
Methods: In this phase 2 study (this study was registered at ClinicalTrials.
Angew Chem Int Ed Engl
June 2025
Lithium (Li) metal batteries combined with solid electrolytes represent a highly promising technology for high-energy-density storage systems. However, their cycling performance encounters inferior stability due to the continuous growth of Li-dendrites. The initial motivation for Li-dendrite growth theoretically arises from the high chemical potential difference (∆µ) at the electrolyte/Li metal interface, yet the effectiveness of ∆µ regulation lacks experimental validation.
View Article and Find Full Text PDFSulfide-based all-solid-state batteries (ASSBs) have ushered in a new era of energy storage technology, offering the tantalizing prospect of unprecedented energy density and safety. However, the poor electrode-electrolyte interface between Li anodes and sulfide solid electrolytes has hindered its practical application. In this review, the primary focus lies in the current fundamental understanding, challenges, and optimization strategies regarding the interface chemistries between sulfide solid electrolytes and Li anode.
View Article and Find Full Text PDFBreast cancer represents a significant therapeutic challenge due to its aggressive nature and resistance to treatment. A major cause of treatment failure in breast cancer is the presence of rare, low-proliferative disseminated tumor cells (DTCs) in distant organs including the bone marrow. This study introduced a microfluidic-based approach to improve the immunodetection and isolation of these rare DTCs for downstream analysis, with an emphasis on optimizing immunocapture, release, and enrichment methods of live DTCs as compared to the standard approach for blood-borne circulating tumor cells (CTCs).
View Article and Find Full Text PDFImmunotherapy has limited efficacy in glioblastoma (GBM) due to the blood-brain barrier and the immunosuppressed or "cold" tumor microenvironment (TME) of GBM, which is dominated by immune-inhibitory cells and depleted of CTL and dendritic cells (DC). Here, we report the development and application of a machine learning precision method to identify cell fate determinants (CFD) that specifically reprogram GBM cells into induced antigen-presenting cells with DC-like functions (iDC-APC). In murine GBM models, iDC-APCs acquired DC-like morphology, regulatory gene expression profile, and functions comparable to natural DCs.
View Article and Find Full Text PDFBrain tumors, particularly glioblastoma (GBM), are devastating and challenging to treat, with a low 5-year survival rate of only 6.6%. Mouse models are established to understand tumorigenesis and develop new therapeutic strategies.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2024
All-solid-state batteries (ASSBs) based on inorganic solid electrolytes fascinate a large body of researchers in terms of overcoming the inferior energy density and safety issues of existing lithium-ion batteries. To date, the cathode designs in the ASSBs achieve remarkable achievements, adding the urgency of scaling up the battery system toward inorganic solid-state pouch cell configuration for the application market. Herein, the recent developments of cathode materials and the design considerations for their application in the pouch cell format are reviewed to straighten out the roadmap of ASSBs.
View Article and Find Full Text PDFWhile layered metal oxides remain the dominant cathode materials for the state-of-the-art lithium-ion batteries, conversion-type cathodes such as sulfur present unique opportunities in developing cheaper, safer, and more energy-dense next-generation battery technologies. There has been remarkable progress in advancing the laboratory scale lithium-sulfur (Li-S) coin cells to a high level of performance. However, the relevant strategies cannot be readily translated to practical cell formats such as pouch cells and even battery pack.
View Article and Find Full Text PDFCancers (Basel)
August 2023
Recurrent glioblastoma (rGBM) is a highly aggressive form of brain cancer that poses a significant challenge for treatment in neuro-oncology, and the survival status of patients after relapse usually means rapid deterioration, thus becoming the leading cause of death among patients. In recent years, immunotherapy has emerged as a promising strategy for the treatment of recurrent glioblastoma by stimulating the body's immune system to recognize and attack cancer cells, which could be used in combination with other treatments such as surgery, radiation, and chemotherapy to improve outcomes for patients with recurrent glioblastoma. This therapy combines several key methods such as the use of monoclonal antibodies, chimeric antigen receptor T cell (CAR-T) therapy, checkpoint inhibitors, oncolytic viral therapy cancer vaccines, and combination strategies.
View Article and Find Full Text PDFThe safe operation of rechargeable batteries is crucial because of numerous instances of fire and explosion mishaps. However, battery chemistry involving metallic lithium (Li) as the anode is prone to thermal runaway in flammable organic electrolytes under abusive conditions. Herein, an in situ encapsulation strategy is proposed to construct nonflammable quasi-solid electrolytes through the radical polymerization of a hexafluorobutyl acrylate (HFBA) monomer and a pentaerythritol tetraacrylate (PETEA) crosslinker.
View Article and Find Full Text PDFUtilizing catalysts to accelerate polysulfides conversion are of paramount importance to eliminate the shuttling effect and improve the practical performance of lithium-sulfur (Li-S) batteries. The amorphism, attributes to the abundant unsaturated surface active sites, has recently been recognized as a contribution to increase the activity of catalysts. However, the investigation on amorphous catalysts has received limited interest in lithium-sulfur batteries due to lack of understanding of their composition structure activity.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2023
Angew Chem Int Ed Engl
June 2023
Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li transfer at the solid electrolyte interphase (SEI). Herein, SrI is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I /I redox reaction to reactivate dead Li, dielectric SEI surface with SrF and LiF to prevent electrolyte decomposition and highly ionic conductive (3.
View Article and Find Full Text PDFBackground: Ankyrin repeat and SOCS Box containing 3 (ASB3) is an E3 ubiquitin ligase. It has been reported to regulate the progression of some cancers, but no systematic pan-cancer analysis has been conducted to explore its function in prognosis and immune microenvironment.
Method: In this study, mRNA expression data were downloaded from TCGA and GTEx database.
Incorporation of ceramic materials into separators has been frequently applied in both research and industry to improve the overall high-temperature performances of lithium ion batteries. However, inorganic ceramic particles tend to form aggregation in separators and even fall off in the separator matrix due to the inferior combination between ceramic particles and polymer matrix, giving rise to a decrease in separator porosity and thus the degradation of battery performances. Herein, a single-layer core-shell architecture is designed to reinforce the polymer matrix through encircling Al O particles by poly(vinylidene fluoride) with strong inter-molecular interaction.
View Article and Find Full Text PDFTumor Treating Fields (TTFields), an approved therapy for glioblastoma (GBM) and malignant mesothelioma, employ noninvasive application of low-intensity, intermediate-frequency, alternating electric fields to disrupt the mitotic spindle, leading to chromosome missegregation and apoptosis. Emerging evidence suggests that TTFields may also induce inflammation. However, the mechanism underlying this property and whether it can be harnessed therapeutically are unclear.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2022
Lithium metal batteries (LMBs) have aroused extensive interest in the field of energy storage owing to the ultrahigh anode capacity. However, strong solvation of Li and slow interfacial ion transfer associated with conventional electrolytes limit their long-cycle and high-rate capabilities. Herein an electrolyte system based on fluoroalkyl ether 2,2,2-trifluoroethyl-1,1,2,3,3,3-hexafluoropropyl ether (THE) and ether electrolytes is designed to effectively upgrade the long-cycle and high-rate performances of LMBs.
View Article and Find Full Text PDFObjective: The aim of the objective was to present our initial experience and evaluate the feasibility of the novel comprehensive modified laparoscopic pyeloplasty (CMLP) technique based on membrane anatomy.
Materials And Methods: Forty-eight patients underwent CMLP from February 2016 to October 2020. CMLP involves the following: dissection of the ureter was based on the fascia or fusion fascia formed by embryonic development.
Developing advanced electrode materials with enhanced charge-transfer kinetics is the key to realizing fast energy storage technologies. Commonly used modification strategies, such as nanoengineering and carbon coating, are mainly focused on electron transfer and bulk Li diffusion. Nonetheless, the desolvation behavior, which is considered as the rate-limiting process for charge-storage, is rarely studied.
View Article and Find Full Text PDFIt is still challenging to develop sulfur electrodes for Li-S batteries with high electrical conductivity and fast kinetics, as well as efficient suppression of the shuttling effect of lithium polysulfides. To address such issues, herein, polar MoTe with different phases (2H, 1T, and 1T') were deeply investigated by density functional theory calculations, suggesting that the 1T'-MoTe displays concentrated density of states (DOS) near the Fermi level with high conductivity. By optimization of the synthesis, 1T'-MoTe quantum dots decorated three-dimensional graphene (MTQ@3DG) was prepared to overcome these issues, and it accomplished exceptional performance in Li-S batteries.
View Article and Find Full Text PDFThe slow redox kinetics during cycling process and the serious shuttle effect caused by the solubility of lithium polysulfides (LiPSs) dramatically hinder the practical application of Li-S batteries. Herein, a facile and scalable spray-drying strategy is presented to construct conductive polar Mo C quantum dots-decorated carbon nanotube (CNT) networks (MCN) as an efficient absorbent and electrocatalyst for Li-S batteries. The results reveal that the MCN/S electrode exhibits a high specific capacity of 1303.
View Article and Find Full Text PDFAlthough Li-metal anodes are extremely attractive owing to the ultrahigh theoretical specific capacity, the low Coulombic efficiency and severe safety hazards resulting from uncontrollable Li dendrites growth hinder their widespread implementation. Herein, we propose a novel design of Ni macropore arrays for the functional Li deposition host. Benefiting from the regulated electric field distribution, Li nucleation and growth can be well confined within conductive Ni macropores.
View Article and Find Full Text PDFLithium metal represents an ultimate anode material of lithium batteries for its high energy density. However, its large negative redox potential and reactive nature can trigger electrolyte decomposition and dendrite formation, causing unstable cycling and short circuit of batteries. Herein, we engineer a resilient solid electrolyte interphase on the Li anode by compositing the battery separator with organosulfur compounds and inorganic salts from garlic.
View Article and Find Full Text PDF