Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Molecular testing is increasingly used to identify malignancy in thyroid nodules (especially indeterminate category). Measurement of cell-free DNA (cfDNA) levels from plasma has been useful in diagnosis of cancers of other organs/tissues; herein we analyze cfDNA levels in patients with thyroid nodules to explore the possibility of establishing a cutoff for identification of malignancy.

Methods: Patients underwent ultrasonography (USG) and USG-guided fine needle aspiration as well as surgery, where indicated. Cell-free DNA was extracted from plasma and quantified. In initial analysis (determination of cutoff), cfDNA levels were compared between Bethesda 2 and Bethesda 5 &6 to establish a cutoff value that could differentiate malignant from benign nodules. In the subsequent analysis, the aforementioned cutoff was applied (validation of cutoff) to those with indeterminate nodules to check ability to predict malignancy.

Results: Fine needle aspiration (n = 119) yielded patients with Bethesda 2 (n = 69) Bethesda 5 & 6 (n = 13) who underwent histopathological confirmation. Cell-free DNA levels in these 2 groups were 22.85 ± 1.27 and 96.20 ± 8.31 (ng/mL) respectively. A cfDNA cutoff of 67.9 ng/mL, with area under the curve of 0.992 (95% CI, 0.97-1.0) with 100% sensitivity and 93% specificity was established to identify malignant lesions. Indeterminate group (Bethesda 3 & 4) underwent surgery (malignant n = 24), (benign n = 13), and using the previously identified cutoff for cfDNA, we were able to identify malignant lesions with a sensitivity of 100% and specificity of 92.3%. There was a very strong agreement between cfDNA-based classification with histopathology-based classification of benign and malignant nodules (Cohen's kappa 0.94; P < 0.001).

Conclusion: Plasma cfDNA estimation could help differentiate malignant from benign thyroid nodules.

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgab030DOI Listing

Publication Analysis

Top Keywords

cell-free dna
16
thyroid nodules
12
cfdna levels
12
differentiate malignant
8
malignant benign
8
fine needle
8
needle aspiration
8
cutoff cfdna
8
identify malignant
8
malignant lesions
8

Similar Publications

Recent improvements in cell-free DNA technology have enabled non-invasive prenatal testing (NIPT) to screen for fetal single-gene autosomal recessive conditions from maternal blood as early as the first trimester. This technique can determine the fetal risk for cystic fibrosis (CF) with a single blood sample from a pregnant person without the need for a partner sample, which is required for traditional carrier screening. A retrospective review of 100,106 consecutive general-risk pregnant patients who underwent CF carrier screening was completed.

View Article and Find Full Text PDF

Liquid biopsies, particularly those involving circulating tumor DNA (ctDNA) from patient blood, have emerged as crucial and minimally invasive adjuncts to standard tissue-based testing. ctDNA testing enables the identification of actionable mutations for targeted therapy and can be routinely used when tissue samples are unavailable for genotyping. Compared to tissue-based testing, ctDNA testing has the advantages of capturing spatial or temporal genomic heterogeneity and facilitating repeated assessments.

View Article and Find Full Text PDF

SLC7A11 encodes the glutamate-cystine exchanger xCT, which is a key regulator of intracellular antioxidant capacity and extracellular glutamate levels. We have identified SLC7A11 as a direct target of the glucocorticoid receptor (GR). The GR agonist dexamethasone represses SLC7A11 expression in multiple cell types, from epithelial cells to astrocytes.

View Article and Find Full Text PDF

ctDNA detects residual disease after neoadjuvant chemoradiotherapy and guides adjuvant therapy in esophageal squamous cell carcinoma.

Cell Rep Med

August 2025

Department of Thoracic Surgery, Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai 200030, China. Electronic address:

The diagnostic accuracy of circulating tumor DNA (ctDNA) for detecting molecular residual disease (MRD) after multimodal treatment remains unclear. In a prospective cohort of 132 patients with locally advanced esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant chemoradiotherapy (nCRT) followed by clinical response evaluation and surgery, tumor-informed personalized-panel and fixed-panel ctDNA assays are applied to serial blood samples. Personalized ctDNA assay demonstrates a superior baseline detection rate (99.

View Article and Find Full Text PDF

Objective: To evaluate the performance of non-invasive prenatal testing (NIPT) in vanishing-twin and multiple pregnancies.

Methods: This study was conducted as part of the TRIDENT-2 study, in which NIPT was offered as a first-tier screening test to women with a multiple pregnancy or vanishing-twin pregnancy between 1 June 2020 and 31 March 2023 in The Netherlands. Abnormal NIPT results were investigated by follow-up invasive prenatal testing and/or postnatal genetic testing.

View Article and Find Full Text PDF