Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerical body models of children are used for designing medical devices, including but not limited to optical imaging, ultrasound, CT, EEG/MEG, and MRI. These models are used in many clinical and neuroscience research applications, such as radiation safety dosimetric studies and source localization. Although several such adult models have been reported, there are few reports of full-body pediatric models, and those described have several limitations. Some, for example, are either morphed from older children or do not have detailed segmentations. Here, we introduce a 29-month-old male whole-body native numerical model, "MARTIN", that includes 28 head and 86 body tissue compartments, segmented directly from the high spatial resolution MRI and CT images. An advanced auto-segmentation tool was used for the deep-brain structures, whereas 3D Slicer was used to segment the non-brain structures and to refine the segmentation for all of the tissue compartments. Our MARTIN model was developed and validated using three separate approaches, through an iterative process, as follows. First, the calculated volumes, weights, and dimensions of selected structures were adjusted and confirmed to be within 6% of the literature values for the 2-3-year-old age-range. Second, all structural segmentations were adjusted and confirmed by two experienced, sub-specialty certified neuro-radiologists, also through an interactive process. Third, an additional validation was performed with a Bloch simulator to create synthetic MR image from our MARTIN model and compare the image contrast of the resulting synthetic image with that of the original MRI data; this resulted in a "structural resemblance" index of 0.97. Finally, we used our model to perform pilot MRI safety simulations of an Active Implantable Medical Device (AIMD) using a commercially available software platform (Sim4Life), incorporating the latest International Standards Organization guidelines. This model will be made available on the Athinoula A. Martinos Center for Biomedical Imaging website.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806143PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241682PLOS

Publication Analysis

Top Keywords

pilot mri
8
mri safety
8
tissue compartments
8
martin model
8
adjusted confirmed
8
synthetic image
8
model
6
mri
5
development validation
4
validation pilot
4

Similar Publications

Quantitative Susceptibility Mapping for Evaluating Renal Functional Injury in Chronic Kidney Disease Patients: A Pilot Study.

NMR Biomed

October 2025

Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.

Chronic kidney disease (CKD) is an increasing global health problem, resulting in gradual loss of renal function and irreversible renal injury. The noninvasive detection, monitoring, and timely intervention of CKD might benefit the patients' prognosis. This study aims to assess renal functional injury in CKD patients by using magnetic resonance imaging (MRI) of quantitative susceptibility mapping (QSM).

View Article and Find Full Text PDF

Changes in dynamic and static functional connectivity in amygdala subregions in major depressive disorder treated with esketamine in and sertraline: A pilot study.

J Affect Disord

September 2025

Department of Traditional Chinese Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China. Electronic address:

Introduction: Dysfunction in amygdala networks has been implicated in major depressive disorder (MDD). Pharmacological treatments, such as esketamine and sertraline, are believed to exert their antidepressant effects by modulating amygdalar activity. This study aimed to investigate the relationship between changes in dynamic functional connectivity (dFC) within amygdala subregions and treatment outcomes, with a focus on identifying potential neuroimaging markers.

View Article and Find Full Text PDF

Background: Advanced MRI techniques, motion-correction and T2*-relaxometry, may provide information regarding functional properties of pulmonary tissue. We assessed whether lung volumes and pulmonary T2* values in fetuses with congenital diaphragmatic hernia (CDH) were lower than controls and differed between survivors and non-survivors.

Methods: Women with uncomplicated pregnancies (controls) and those with a CDH had a fetal MRI on a 1.

View Article and Find Full Text PDF

Precise and rapid identification of knee osteoarthritis (OA) is essential for efficient management and therapy planning. Conventional diagnostic techniques frequently depend on subjective interpretation, which have shortcomings, particularly during the first phases of the illness. In this study, magnetic resonance imaging (MRI) was used to create knee datasets as novel techniques for evaluating knee OA.

View Article and Find Full Text PDF

Objectives: Early diagnosis and timely treatment of renal fibrosis can improve the prognosis of patients with nephropathy. We aim to investigate the utility of multi-parametric MRI for evaluating early renal fibrosis and therapeutic efficacy in a rat model.

Methods: Eighty-four male SD rats receiving tail vein injection of adriamycin doxorubicin (ADR) to establish renal fibrosis models were utilized.

View Article and Find Full Text PDF