Publications by authors named "Hongbae Jeong"

Article Synopsis
  • Combining MRI and EEG offers a comprehensive way to study brain function, but existing EEG nets limit the quality of simultaneous imaging due to radiofrequency interference.
  • The study tested the Inknet2, a new high-resistance EEG net using conductive ink, which showed potential to minimize artifacts and maintain image quality across various MRI sequences.
  • Results indicated that Inknet2 produced fewer artifacts than traditional nets and achieved comparable image quality to scans without any net, making it a promising tool for high-quality brain imaging.
View Article and Find Full Text PDF

Objective: To enhance RF safety when implantable medical devices are located within the body coil but outside the imaging region by using a secondary resonator (SR) to reduce electric fields, the corresponding specific absorption rate (SAR), and temperature change during MRI.

Materials And Methods: This study was conducted using numerical simulations with an American Society for Testing and Materials (ASTM) phantom and adult human models of Ella and Duke from Virtual Family Models, along with corresponding experimental results of temperature change obtained using the ASTM phantom. The circular SR was designed with an inner diameter of 150 mm and a width of 6 mm.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) and continuous electroencephalogram (EEG) monitoring are essential in the clinical management of neonatal seizures. EEG electrodes, however, can significantly degrade the image quality of both MRI and CT due to substantial metallic artifacts and distortions. Thus, we developed a novel thin film trace EEG net ("NeoNet") for improved MRI and CT image quality without compromising the EEG signal quality.

View Article and Find Full Text PDF

Unlabelled: We introduce a new electroencephalogram (EEG) net, which will allow clinicians to monitor EEG while tracking head motion. Motion during MRI limits patient scans, especially of children with epilepsy. EEG is also severely affected by motion-induced noise, predominantly ballistocardiogram (BCG) noise due to the heartbeat.

View Article and Find Full Text PDF

Purpose: To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI.

Methods: Synthetic T -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared.

View Article and Find Full Text PDF

. Numerical models are central in designing and testing novel medical devices and in studying how different anatomical changes may affect physiology. Despite the numerous adult models available, there are only a few whole-body pediatric numerical models with significant limitations.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is commonly used to treat drug-resistant epilepsy and depression. The therapeutic effect of VNS depends on stimulating the afferent vagal fibers. However, the vagus is a mixed nerve containing afferent and efferent fibers, and the stimulation of cardiac efferent fibers during VNS may produce a rare but severe risk of bradyarrhythmia.

View Article and Find Full Text PDF

This study investigates the effects of EEG traces in B1 transmit field distortion in a 3T MRI. EEG is a non-invasive method to monitor brain activities. Although EEG monitors brain activities with a high temporal resolution, it has trouble localizing the signal source.

View Article and Find Full Text PDF

Recently, white-matter fiber tract pathways carrying neural signals through the brain were shown to follow curved, orthogonal grids. This study focuses on how these white-matter fibers may be selectively excited using micromagnetic stimulation (MS), a new type of neuronal stimulation, which generates microscopic eddy currents capable of directionally activating neurons. One of the most remarkable properties of this novel type of stimulation is that the MS fields provide unique directional activation of neuronal elements not seen with traditional electrical stimulation.

View Article and Find Full Text PDF

This study investigates the radiofrequency (RF) induced heating in a pediatric whole-body voxel model with a high-density electroencephalogram (hd-EEG) net during magnetic resonance imaging (MRI) at 3 Tesla. A total of three cases were studied: no net (NoNet), a resistive hd-EEG (NeoNet), and a copper (CuNet) net. The maximum values of specific absorption rate averaged over 10g-mass (10gSAR) in the head were calculated with the NeoNet was 12.

View Article and Find Full Text PDF

Numerical body models of children are used for designing medical devices, including but not limited to optical imaging, ultrasound, CT, EEG/MEG, and MRI. These models are used in many clinical and neuroscience research applications, such as radiation safety dosimetric studies and source localization. Although several such adult models have been reported, there are few reports of full-body pediatric models, and those described have several limitations.

View Article and Find Full Text PDF

We propose a workflow for validating parallel transmission (pTx) radio-frequency (RF) magnetic field heating patterns using Proton-Resonance Frequency shift (PRF)-based MR thermometry. Electromagnetic (EM) and thermal simulations of a 7 T 8-channel dipole coil were done using commercially available software (Sim4Life) to assess RF heating. The fabrication method for a phantom with electrical properties matched to human tissue is also described, along with methods for its electrical and thermal characterisation.

View Article and Find Full Text PDF

Purpose: Safety limits for the permitted specific absorption rate (SAR) place restrictions on pulse sequence design, especially at ultrahigh fields (≥ 7 tesla). Due to intersubject variability, the SAR is usually conservatively estimated based on standard human models that include an applied safety margin to ensure safe operation. One approach to reducing the restrictions is to create more accurate subject-specific models from their segmented MR images.

View Article and Find Full Text PDF