Imaging Neurosci (Camb)
November 2024
Anatomical magnetic resonance imaging (MRI) templates of the brain are essentialto group-level analyses and image processing pipelines, as they provide areference space for spatial normalisation. While it has become common forstudies to acquire multimodal MRI data, many templates are still limited to onetype of modality, usually either scalar or tensor based. Aligning each modalityin isolation does not take full advantage of the available complementaryinformation, such as strong contrast between tissue types in structural images,or axonal organisation in the white matter in diffusion tensor images.
View Article and Find Full Text PDFImaging Neurosci (Camb)
March 2024
We present MMORF-FSL's MultiMOdal Registration Framework-a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps.
View Article and Find Full Text PDFScand J Occup Ther
January 2024
Background: The concept of an occupational pattern in occupational therapy and occupational science has evolved with varying definitions, ranging from activity patterns to patterns of daily occupation.
Aims: This study aimed to explore the concept of occupational pattern, develop an updated definition of the concept, and theoretically validate the concept's definition.
Method: Walker and Avant's concept analysis method was used, where both theoretical frameworks and peer-reviewed scientific literature were searched and synthesized to clarify and define the concept.
Imaging Neurosci (Camb)
April 2024
Diffusion MRI is a neuroimaging modality used to evaluate brain structure at a microscopic level and can be exploited to map white matter fibre bundles and microstructure in the brain. One common issue is the presence of artefacts, such as acquisition artefacts, physiological artefacts, distortions, or image processing-related artefacts. These may lead to problems with other downstream processes and can bias subsequent analyses.
View Article and Find Full Text PDFImaging Neurosci (Camb)
January 2024
Diffusion MRI of the infant brain allows investigation of the organizational structure of maturing fibers during brain development. Post-mortem imaging has the potential to achieve high resolution by using long scan times, enabling precise assessment of small structures. Technical development for post-mortem diffusion MRI has primarily focused on scanning of fixed tissue, which is robust to effects like temperature drift that can cause unfixed tissue to degrade.
View Article and Find Full Text PDFImaging Neurosci (Camb)
January 2024
Development of diffusion MRI (dMRI) denoising approaches has experienced considerable growth over the last years. As noise can inherently reduce accuracy and precision in measurements, its effects have been well characterised both in terms of uncertainty increase in dMRI-derived features and in terms of biases caused by the noise floor, the smallest measurable signal given the noise level. However, gaps in our knowledge still exist in objectively characterising dMRI denoising approaches in terms of both of these effects and assessing their efficacy.
View Article and Find Full Text PDFDiffusion-weighted MRI (dMRI) is a medical imaging method that can be used to investigate the brain microstructure and structural connections between different brain regions. The method, however, requires relatively complex data processing frameworks and analysis pipelines. Many of these approaches are vulnerable to signal dropout artefacts that can originate from subjects moving their head during the scan.
View Article and Find Full Text PDFDevelopment of diffusion MRI (dMRI) denoising approaches has experienced considerable growth over the last years. As noise can inherently reduce accuracy and precision in measurements, its effects have been well characterised both in terms of uncertainty increase in dMRI-derived features and in terms of biases caused by the noise floor, the smallest measurable signal given the noise level. However, gaps in our knowledge still exist in objectively characterising dMRI denoising approaches in terms of both of these effects and assessing their efficacy.
View Article and Find Full Text PDFPurpose: To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing.
Methods: Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (k ) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without k -oversampling.
Purpose: To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI.
Methods: Synthetic T -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared.
Accurate spatial alignment of MRI data acquired across multiple contrasts in the same subject is often crucial for data analysis and interpretation, but can be challenging in the presence of geometric distortions that differ between acquisitions. It is well known that single-shot echo-planar imaging (EPI) acquisitions suffer from distortion in the phase-encoding direction due to B field inhomogeneities arising from tissue magnetic susceptibility differences and other sources, however there can be distortion in other encoding directions as well in the presence of strong field inhomogeneities. High-resolution ultrahigh-field MRI typically uses low bandwidth in the slice-encoding direction to acquire thin slices and, when combined with the pronounced B inhomogeneities, is prone to an additional geometric distortion in the slice direction as well.
View Article and Find Full Text PDFFront Neurosci
May 2022
The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods.
View Article and Find Full Text PDFThere is strong evidence of brain-related abnormalities in COVID-19. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls.
View Article and Find Full Text PDFSARS-CoV-2 infection has been shown to damage multiple organs, including the brain. Multiorgan MRI can provide further insight on the repercussions of COVID-19 on organ health but requires a balance between richness and quality of data acquisition and total scan duration. We adapted the UK Biobank brain MRI protocol to produce high-quality images while being suitable as part of a post-COVID-19 multiorgan MRI exam.
View Article and Find Full Text PDFWhite matter (WM) plasticity supports skill learning and memory. Up- and downregulation of brain activity in animal models lead to WM alterations. But can bidirectional brain-activity manipulation change WM structure in the adult human brain? We employ fMRI neurofeedback to endogenously and directionally modulate activity in the sensorimotor cortices.
View Article and Find Full Text PDFComparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy.
View Article and Find Full Text PDFNeuroimage
December 2021
The Human Connectome Project (HCP) was launched in 2010 as an ambitious effort to accelerate advances in human neuroimaging, particularly for measures of brain connectivity; apply these advances to study a large number of healthy young adults; and freely share the data and tools with the scientific community. NIH awarded grants to two consortia; this retrospective focuses on the "WU-Minn-Ox" HCP consortium centered at Washington University, the University of Minnesota, and University of Oxford. In just over 6 years, the WU-Minn-Ox consortium succeeded in its core objectives by: 1) improving MR scanner hardware, pulse sequence design, and image reconstruction methods, 2) acquiring and analyzing multimodal MRI and MEG data of unprecedented quality together with behavioral measures from more than 1100 HCP participants, and 3) freely sharing the data (via the ConnectomeDB database) and associated analysis and visualization tools.
View Article and Find Full Text PDFThere is strong evidence for brain-related abnormalities in COVID-19 . It remains unknown however whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here, we investigated brain changes in 785 UK Biobank participants (aged 51-81) imaged twice, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans, with 141 days on average separating their diagnosis and second scan, and 384 controls.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
May 2021
Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity.
View Article and Find Full Text PDFThe Developing Human Connectome Project is an Open Science project that provides the first large sample of neonatal functional MRI data with high temporal and spatial resolution. These data enable mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organization in humans. Here, we characterize in unprecedented detail the maturation and integrity of resting state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
View Article and Find Full Text PDFEClinicalMedicine
January 2021
Background: The medium-term effects of Coronavirus disease (COVID-19) on organ health, exercise capacity, cognition, quality of life and mental health are poorly understood.
Methods: Fifty-eight COVID-19 patients post-hospital discharge and 30 age, sex, body mass index comorbidity-matched controls were enrolled for multiorgan (brain, lungs, heart, liver and kidneys) magnetic resonance imaging (MRI), spirometry, six-minute walk test, cardiopulmonary exercise test (CPET), quality of life, cognitive and mental health assessments.
Findings: At 2-3 months from disease-onset, 64% of patients experienced breathlessness and 55% reported fatigue.
The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers.
View Article and Find Full Text PDF