Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

. Combining magnetic resonance imaging (MRI) and electroencephalography (EEG) provides a powerful tool for investigating brain function at varying spatial and temporal scales. Simultaneous acquisition of both modalities can provide unique information that a single modality alone cannot reveal. However, current simultaneous EEG-fMRI studies are limited to a small set of MRI sequences due to the image quality and safety limitations of commercially available MR-conditional EEG nets. We tested whether the Inknet2, a high-resistance polymer thick film based EEG net that uses conductive ink, could enable the acquisition of a variety of MR image modalities with minimal artifacts by reducing the radiofrequency-shielding caused by traditional MR-conditional nets.. We first performed simulations to model the effect of the EEG nets on the magnetic field and image quality. We then performed phantom scans to test image quality with a conventional copper EEG net, with the new Inknet2, and without any EEG net. Finally, we scanned five human subjects at 3 Tesla (3 T) and three human subjects at 7 Tesla (7 T) with and without the Inknet2 to assess structural and functional MRI image quality.. Across these simulations, phantom scans, and human studies, the Inknet2 induced fewer artifacts than the conventional net and produced image quality similar to scans with no net present.. Our results demonstrate that high-quality structural and functional multimodal imaging across a variety of MRI pulse sequences at both 3 T and 7 T is achievable with an EEG net made with conductive ink and polymer thick film technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732253PMC
http://dx.doi.org/10.1088/1741-2552/ad8837DOI Listing

Publication Analysis

Top Keywords

image quality
20
eeg net
16
conductive ink
12
eeg
8
eeg nets
8
polymer thick
8
thick film
8
net conductive
8
phantom scans
8
human subjects
8

Similar Publications

Purpose: In children with Langerhans Cell Histiocytosis (LCH), FDG-PET/CT is used for staging and response assessment. Whole-body MRI (WB-MRI) can serve as an ionizing radiation-free alternative for repeated whole-body imaging. The aim of this study was to compare WB-MRI with FDG-PET/CT for staging and response assessment in pediatric LCH.

View Article and Find Full Text PDF

Importance And Objective: Voice changes during menopause affect patients' communication and quality of life. This narrative review aims to provide a comprehensive exploration of voice changes during menopause. It presents objective and subjective/symptomatic changes as well as treatment options for this population.

View Article and Find Full Text PDF

Fetal 4D Flow CMR for Advanced Diagnostics of Congenital Heart Disease: A Prospective Cohort Study.

Eur Heart J Cardiovasc Imaging

September 2025

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.

Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.

View Article and Find Full Text PDF

PurposeTo introduce, describe and validate a novel, 3D-printed portable slit lamp system integrated with a macro lens-equipped smartphone, providing clinicians with a quick, easy, and effective method for obtaining high-quality clinical images.Materials and MethodsA 3D-printed portable slit lamp was developed, comprising a warm white LED light pen housed in a custom case with a biconvex lens focusing light through a 0.4 mm slit.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF