An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head.

Magn Reson Med

Oxford Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Safety limits for the permitted specific absorption rate (SAR) place restrictions on pulse sequence design, especially at ultrahigh fields (≥ 7 tesla). Due to intersubject variability, the SAR is usually conservatively estimated based on standard human models that include an applied safety margin to ensure safe operation. One approach to reducing the restrictions is to create more accurate subject-specific models from their segmented MR images. This study uses electromagnetic simulations to investigate the minimum number of tissue groups required to accurately determine SAR in the human head.

Methods: Tissue types from a fully characterized electromagnetic human model with 47 tissue types in the head and neck region were grouped into different tissue clusters based on the conductivities, permittivities, and mass densities of the tissues. Electromagnetic simulations of the head model inside a parallel transmit head coil at 7 tesla were used to determine the minimum number of required tissue clusters to accurately determine the subject-specific SAR. The identified tissue clusters were then evaluated using 2 additional well-characterized electromagnetic human models.

Results: A minimum of 4-clusters-plus-air was found to be required for accurate SAR estimation. These tissue clusters are centered around gray matter, fat, cortical bone, and cerebrospinal fluid. For all 3 simulated models, the parallel transmit maximum 10g SAR was consistently determined to within an error of <12% relative to the full 47-tissue model.

Conclusion: A minimum of 4-clusters-plus-air are required to produce accurate personalized SAR simulations of the human head when using parallel transmit at 7 tesla.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.28467DOI Listing

Publication Analysis

Top Keywords

tissue clusters
16
minimum number
12
parallel transmit
12
tissue
8
number tissue
8
tissue groups
8
groups required
8
electromagnetic simulations
8
accurately determine
8
tissue types
8

Similar Publications

Background: During pregnancy, significant physiological, morphological, and hormonal changes profoundly affect women's biomechanics, increasing the risk of falls and musculoskeletal complaints, especially in the third trimester. To understand movement adaptations and musculoskeletal disorders in pregnant women, kinetic analysis using pregnant-specific multi-segment or musculoskeletal models is essential. This review aims to evaluate the development, applications and limitations of such models intended for kinetic analysis in pregnancy.

View Article and Find Full Text PDF

Uterine leiomyosarcoma (uLMS) is a rare and deadly gynecologic malignancy. uLMS is histologically heterogeneous and presents with a wide spectrum of tumor differentiation, with a broad range of genomic DNA instability, which can make the diagnosis and prognosis of uLMS challenging. Methylation has emerged as a useful molecular tool in tumor classification and diagnosis in certain neoplasms.

View Article and Find Full Text PDF

Sensory neurons shape local macrophage identity via TGF-β signaling.

Immunity

September 2025

Institute for Infection Control and Prevention, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center and Fa

Resident macrophages play integral roles in maintaining tissue homeostasis and function. In the skin, prenatally seeded, specialized macrophages patrol sensory nerves and contribute to their regeneration after injury. However, mechanisms underlying the long-lasting postnatal commitment of these nerve-associated macrophages remain largely elusive.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF

Chitinases, enzymes responsible for hydrolyzing chitin, a significant component of fungal cell walls, play a crucial role in plant defense mechanisms, growth, symbiotic relationships, and stress resistance. In this study, we identified 27 chitinase genes in chickpeas (CaChi) and classified them into five classes based on phylogenetic analysis. Overall, chitinase genes are clustered on eight chromosomes.

View Article and Find Full Text PDF