Multifunctional Hydrogel Patch with Toughness, Tissue Adhesiveness, and Antibacterial Activity for Sutureless Wound Closure.

ACS Biomater Sci Eng

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A multifunctional hydrogel patch with a combination of high toughness, superior adhesion, and good antibacterial effect is a highly desired surgical material. In this study, we developed a novel hydrogel patch composed of poly(ethylene glycol) diacrylate/quaternized chitosan/tannic acid (PEGDA/QCS/TA) based on mussel-inspired chemistry. The physical and biological properties of the hydrogel patch were systematically evaluated in vitro and in vivo. The results indicated that this hydrogel patch possessed compact microstructure, low swelling ratio, tough mechanical properties, good antibacterial activities against and , and excellent dry/wet adhesive ability to a wide range of substrates. The hydrogel patch could also be degraded and absorbed in vivo and used as a sutureless material for wound closure. All these findings demonstrate that the PEGDA/QCS/TA hydrogel patch with multifunctional properties has great potential for application in biomedical fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.9b00130DOI Listing

Publication Analysis

Top Keywords

hydrogel patch
28
multifunctional hydrogel
8
wound closure
8
good antibacterial
8
patch
7
hydrogel
6
patch toughness
4
toughness tissue
4
tissue adhesiveness
4
adhesiveness antibacterial
4

Similar Publications

Quasi-static and dynamic nanoindentation for mechano-chemical analysis on biodegradable polymeric nanocomposites for regenerative medicine.

Colloids Surf B Biointerfaces

September 2025

Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis, Campobasso, 86100, Italy. Electronic address:

Four different biomedical patches were bioprinted using nanocomposite hydrogels of sodium alginate/gelatin, sodium alginate/gelatin/indocyanine green freely dispersed, sodium alginate/gelatin/empty liposomes and sodium alginate/gelatin/indocyanine green loaded liposomes. Quasi-static and dynamic nanoindentations of the patch surfaces were performed to examine the effect of the single component on the mechanical response. The combination of results suggests that the mechanical structure of the gels is strongly influenced by crosslinking and the liposomes incorporating dye.

View Article and Find Full Text PDF

Diabetic wounds present persistent challenges due to impaired healing, recurrent infection, oxidative stress, and dysregulated glucose metabolism. Bioinspired polymeric microneedle (MN) patches have emerged as multifunctional platforms capable of penetrating the stratum corneum to deliver therapeutics directly into the dermis, enabling glucose regulation, antimicrobial action, reactive oxygen species (ROS) modulation, and proangiogenic stimulation. Recent experimental evidence has demonstrated that the integration of glucose oxidase-loaded porous metal-organic frameworks, photothermal nanomaterials, and antioxidant hydrogels within dissolvable MNs achieves synergistic bactericidal effects, accelerates collagen deposition, and enhances neovascularization in diabetic wound models.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF

Postoperative peritoneal adhesion, driven by inflammatory response and fibrotic deposition, remains the most common complication following abdominal surgeries, with limited effective solutions. Herein, a dual-network hydrogel patch (GPSB) is developed for effective peritoneal adhesion prevention through interpenetrating a gelatin network with a zwitterionic polysulfobetaine (PSB) network. The biodegradable gelatin network is dynamically crosslinked zinc ion (Zn)-polyphenol coordination, endowing the patch with inherent antibacterial and pro-healing activities.

View Article and Find Full Text PDF

Counterion-mediated modulation of electroadhesion in polyanionic/polycationic hydrogels: mechanisms and performance.

J Colloid Interface Sci

August 2025

Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China. Electronic address:

Reversible electroadhesive polyelectrolyte gels have emerged as promising materials for flexible electronic and soft robotic applications. While current research predominantly emphasizes polymer design and structural optimization to enhance both the reversibility and strength of electroadhesion, fundamental limitations persist in elucidating ion-mediated interfacial mechanisms. Herein, the synergistic effects of ion species selection and interfacial engineering were systematically investigated through the development of distinct polyelectrolyte hydrogel assemblies.

View Article and Find Full Text PDF