98%
921
2 minutes
20
Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756360 | PMC |
http://dx.doi.org/10.1111/tpj.14976 | DOI Listing |
J Plant Physiol
September 2025
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
Weeds are one of the major constraints for wheat productivity, causing significant yield losses worldwide. While chemical control is the most used practice to overcome weed damage, its efficacy is challenged by increasing weed resistance to most used herbicides, which is an expanding phenomenon caused by herbicide overuse/misuse. Modern wheat varieties are less able to perceive the presence of weeds than old varieties and are therefore less competitive against them and require chemical control to ensure adequate yields.
View Article and Find Full Text PDFEvol Appl
September 2025
INRAE, Biologie du Fruit et Pathologie, UMR 1332, PrADAm Université de Bordeaux Villenave d'Ornon France.
Understanding crop domestication offers crucial insights into the evolutionary processes that drive population divergence and adaptation. It also informs the identification of genetically diverse wild germplasm, which is essential for breeding and conservation efforts. While domestication has been extensively studied in many Mediterranean fruit trees, the evolutionary history of the almond () remains comparatively underexplored.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
High-throughput sequencing has generated extensive omics data for Nicotiana species, a key model genus in the Solanaceae family. However, fragmented data and limited cross-species integration in current databases hinder the identification of disease-resistant genes and germplasm innovation. To address these challenges, we developed Nicotiana Multi-Dimensional Omics Database (http://biodb.
View Article and Find Full Text PDFBiochem Biophys Rep
September 2025
State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.
Stripe rust ( f. sp. ) poses a major threat to Chinese wheat production.
View Article and Find Full Text PDFNat Genet
September 2025
Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China.
Clubroot disease, caused by the obligate intracellular rhizarian protist Plasmodiophora brassicae, is devastating to cruciferous crops worldwide. Widespread field P. brassicae pathotypes frequently overcome the pathotype-specific resistance of modern varieties, posing a challenge for durable control of this disease.
View Article and Find Full Text PDF