Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, Setaria viridis has been developed as a model plant to better understand the C4 photosynthetic pathway in major crops. With the increasing availability of genomic resources for S. viridis research, highly efficient genome editing technologies are needed to create genetic variation resources for functional genomics. Here, we developed a protoplast assay to rapidly optimize the multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system in S. viridis. Targeted mutagenesis efficiency was further improved by an average of 1.4-fold with the exonuclease, Trex2. Distinctive mutation profiles were found in the Cas9_Trex2 samples, with 94% of deletions larger than 10 bp, and essentially no insertions at all tested target sites. Further analyses indicated that 52.2% of deletions induced by Cas9_Trex2, as opposed to 3.5% by Cas9 alone, were repaired through microhomology-mediated end joining (MMEJ) rather than the canonical non-homologous end joining DNA repair pathway. Combined with a robust Agrobacterium-mediated transformation method with more than 90% efficiency, the multiplex CRISPR/Cas9_Trex2 system was demonstrated to induce targeted mutations in two tightly linked genes, svDrm1a and svDrm1b, at a frequency ranging from 73% to 100% in T0 plants. These mutations were transmitted to at least 60% of the transgene-free T1 plants, with 33% of them containing bi-allelic or homozygous mutations in both genes. This highly efficient multiplex CRISPR/Cas9_Trex2 system makes it possible to create a large mutant resource for S. viridis in a rapid and high throughput manner, and has the potential to be widely applicable in achieving more predictable and deletion-only MMEJ-mediated mutations in many plant species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.14949DOI Listing

Publication Analysis

Top Keywords

highly efficient
12
efficient genome
8
genome editing
8
setaria viridis
8
multiplex crispr/cas9_trex2
8
crispr/cas9_trex2 system
8
viridis
5
optimization multiplexed
4
multiplexed crispr/cas9
4
system
4

Similar Publications

Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.

View Article and Find Full Text PDF

Robust Antifogging and Antifouling Coating Tailored with Zwitterionic Nanocellulose for Multi-Functional Applications.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.

Biofouling often occurs simultaneously with fogging, presenting significant challenges to visibility, safety, and operational efficiency. The development of biocompatible coatings that offer both antifouling performance and stability under fogging conditions is highly sought after. A method to form multifunctional coatings is presented, utilizing a zwitterionic nanocellulose composite material that demonstrates both antifogging and antifouling properties, suitable for application on various surfaces.

View Article and Find Full Text PDF

IBDV-SSA, a novel molecular approach for the recovery of infectious bursal disease virus whole genomes from FTA cards.

Microbiol Spectr

September 2025

United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Southeast Poultry Research Laboratories, US National Poultry Research Center, Athens, Georgia, USA.

Infectious bursal disease (IBD), a highly contagious viral disease in young chickens, poses significant economic losses due to high mortality and immunosuppression. While IBD virus (IBDV) virulence is influenced by multiple genes, whole-genome sequencing (WGS) of IBDV is crucial for defining the strain pathotype and clinical profile. Flinders Technology Associates (FTA) cards are convenient for field sample collection, but their filter paper matrix can hinder nucleic acid recovery, impacting sequencing efficiency.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

The advancement of bioorthogonal cleavage platforms has emerged as a critical frontier in chemical biology, offering precise molecular liberation through physiologically compatible activation mechanisms. Despite its significant potential, ensuring efficacy typically requires rapid reaction kinetics, high-efficiency payload release, and stable reactants; however, relevant reports remain sparse. Herein, we developed a strain-promoted alkyne-nitrone cycloaddition (SPANC)-based click-release chemistry through installation of a carbamate-linked release moiety at the propargyl position of cyclooctyne, triggering a spontaneous elimination following click cycloaddition to achieve efficient payload liberation.

View Article and Find Full Text PDF