Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compared with the transition metal induced homogeneous catalytic system, the heterogeneous catalytic system based on transition metal-doped metal organic frameworks (MOFs) were stable for the efficient utilization of transition metal and avoiding the metal leaching. The aim of this work is to synthesize Co-doped MIL-53(Al) by one-step solvent thermal method and use it to activate peroxymonosulfate (PMS) to remove tetracycline (TC) in water. The successful synthesis of Co-MIL-53(Al) samples was demonstrated by XDR, SEM and FTIR characterizations. The 25% Co-MIL-53(Al)/PMS system showed the optimal TC removal effect compared to the PMS alone and MIL-53(Al)/PMS system. The catalytic performances of Co-MIL-53(Al)/PMS system in conditions of different pH, co-existing substances and water bodies were investigated. Quenching experiment and electron paramagnetic resonance (EPR) showed that the degradation mechanism by Co-MIL-53(Al) activation PMS was mainly attributed to sulfate radical (SO) and singlet oxygen (O) non-radical. The degradation intermediates of TC were also identified and the possible degradation pathways were proposed. Co-MIL-53(Al) showed good activity after four cycles. These findings demonstrated that Co-MIL-53(Al) can be a promising heterogeneous catalyst for activating PMS to degrade TC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.07.100DOI Listing

Publication Analysis

Top Keywords

transition metal
8
catalytic system
8
co-mil-53al/pms system
8
system
5
heterogeneous activation
4
activation peroxymonosulfate
4
peroxymonosulfate cobalt-doped
4
cobalt-doped mil-53al
4
mil-53al efficient
4
efficient tetracycline
4

Similar Publications

Construction of an Ag-functionalized structural color hydrogel sensor for colorimetric detection of glutathione.

Mikrochim Acta

September 2025

Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.

An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF