98%
921
2 minutes
20
A novel method is described for evaluating the colorimetric accuracy of digital color cameras based on a new measure of the metamer mismatch body (MMB) that is induced by the change from the camera as an 'observer' to the human standard observer. In comparison to the majority of existing methods for evaluating colorimetric accuracy, the advantage of using the MMB is that it is based on the theory of metamer mismatching and, therefore, shows how much color error can arise in principle. A new measure of colorimetric accuracy based on the shape of the camera-induced MMB is proposed and tested. MMB shape is measured in terms of the moments of inertia of the MMB treated as a mass of uniform density. Since colorimetric accuracy is independent of any linear transformation of the sensor space, the MMB measure needs to be as well. Normalization by the moments of inertia of the object color solid is introduced to provide this independence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436135 | PMC |
http://dx.doi.org/10.3390/s20154275 | DOI Listing |
Mikrochim Acta
September 2025
Department of Surgical Oncology, Shaanxi Provincial People's Hospital, 256 Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
Mycoplasma pneumonia, a primary aetiological agent of atypical pneumonia, necessitates the implementation of rapid point-of-care diagnostics. Lateral flow immunoassays (LFIAs) hold promise for point-of-care testing (POCT), yet their sensitivity levels are frequently constrained by probe affinity and matrix interference. We introduce an orientational labelling strategy that employs magnetic nanoparticles (MNPs) functionalized with staphylococcal protein A (SPA) to simultaneously enhance antibody orientation and facilitate magnetic enrichment.
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
Salmonella typhimurium (S. typhimurium) A dual-mode colorimetric/photothermal immunochromatographic strip (ICS) employing hollow polydopamine nanoparticles (h-PDA) is reported for the ultrasensitive detection of Salmonella typhimurium (S. typhimurium).
View Article and Find Full Text PDFAnal Chim Acta
November 2025
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:
Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.
View Article and Find Full Text PDFTalanta
August 2025
Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica, Junín 956, Buenos Aires, Argentina; Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, UBA - CONICET, Junín 956, Buenos Aires, Argentina. Electronic address:
The quantification of orthophosphate is essential for applications like water quality assessment, soil fertility analysis, metabolic monitoring and enzyme activity evaluation. Chemical quantification methods include the reaction between orthophosphate and molybdate under acidic conditions to form 12-molybdophosphoric acid units, which auto-assembles forming nanometer size particles. The adsorption of malachite green to these nanoparticles allows their spectrophotometric detection constituting one of the most widely used methods to quantify phosphate.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
Point-of-care (POC) detection of prostate-specific antigen (PSA) is critical for the early screening and monitoring of prostate cancer (PCa), which facilitates timely intervention and personalized treatment. However, existing POC platforms suffer from inadequate detection sensitivities, susceptibility to matrix interference, and complex sample pretreatment. To address these issues, we proposed a naked-eye and colorimetric sensing platform based on magnetic nanozyme (FeO@ZIF-67@Pt) integrated with a tetrahedral DNA framework (TDF) and alkaline phosphatase (ALP)-triggered hydrolysis reaction for PSA detection with superior sensing performances.
View Article and Find Full Text PDF