98%
921
2 minutes
20
The hybridization of different acceptors remains a fertile ground awaiting exploration, to fully promote the properties of both components. The concept of this work is to exploit a new form of fuller-rylene hybrids as promising acceptors by integrating planar rylene dye and spherical fullerene for boosting the power conversion efficiency. The synthesis of the fuller-rylenes via a straightforward synthetic strategy by one-pot Pd-catalyzed cyclization can be scaled-up. Specifically, our strategy allows the supplements and enhancement of absorption in the visible region, much wider structural and electronic variations by installing R groups as well as decorating R on the perylene core at will, and good processability without compromising the superior characteristics of fullerene. Thus, bay-decorated fuller-rylene revealed a ground-breaking efficiency as high as 8.01%, even outperforming [6,6]-phenyl-C-butyric acid methyl ester (PCBM) as a parallel comparison (7.09%). Our exploration paves a new way for the design of high-efficiency acceptors, which are promising alternatives to PCBM in photovoltaic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c05548 | DOI Listing |
Chemistry
September 2025
International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) deposition, imposing significant social and economic burdens globally. Despite extensive efforts have been devoted to developing fluorescent probes for Aβ imaging, further improving the luminescent efficiency of prevailing probes still remains a significant challenge. Herein, we investigated the inner mechanism of constructing high-efficient Aβ probes via a structural cyclization strategy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Electrochemical synthesis of ammonia (NH) is a promising green alternative to the conventional Haber-Bosch process. Here, we report the synthesis of a heteroatomic metal-metal bonded dual atomic (DA) Mn-Cu catalytic site embedded within nitrogen-doped carbon (NC) matrix for high-performance electrochemical reduction of N to NH. The asymmetric electronic distribution localized at the dual atomic sites synergistically enhances the adsorption and activation of N, facilitating the complex proton-coupled electron transfer process.
View Article and Find Full Text PDFChem Sci
August 2025
College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China
The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt. Electronic address:
Post-synthetic modification (PSM) offers a promising approach for tailoring the compositional, structural, and electronic properties of covalent organic frameworks (COFs), thereby enhancing their exciton dissociation ability and facilitating charge transfer. The effectiveness of these approaches is largely compromised by the harsh conditions, complexity, and alteration of the original structure. Therefore, developing a facile yet effective PSM for modulating COFs' properties without altering the original geometry and/or structure is a challenge.
View Article and Find Full Text PDF