98%
921
2 minutes
20
Excitons and trions (or exciton polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe_{2}. We observe the intervalley dark excitons, which can recombine by the assistance of defect scattering or chiral-phonon emission. We also reveal that a trion can decay in two distinct paths-through intravalley or intervalley electron-hole recombination-into two different final valley states. Although these two paths are energy degenerate, we can distinguish them by lifting the valley degeneracy under a magnetic field. In addition, the intra- and inter-valley trion transitions are coupled to zone-center and zone-corner chiral phonons, respectively, to produce distinct phonon replicas. The observed multipath optical decays of dark excitons and trions provide insight into the internal quantum structure of trions and the complex excitonic interactions with defects and chiral phonons in monolayer valley semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.196802 | DOI Listing |
Light Sci Appl
September 2025
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.
Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
International Center for Quantum and Molecular Structures, Faculty of Physics, Shanghai University, Shanghai 200444, China.
The representation of the electronic structure of benzene is important for understanding the properties of planar and monocyclic organic carbon compounds. Resonant Kekulé and conjugated structures based on localized and delocalized electronic theories, respectively, can be used to depict the ground state of benzene; however, depictions of its electrons vibrating in the excited states remain to be clarified. This paper presents a novel algorithm for exploring the three lowest lying vertically singlet excited states of benzene, focusing on the electronic excitations between occupied π and unoccupied π* orbitals.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
Near-infrared (NIR) detectors, serving as critical technological nodes bridging microscopic molecular recognition and macroscopic intelligent perception, meet the demands of cutting-edge technologies such as multispectral imaging. Organic semiconductor materials demonstrate unique advantages for NIR organic photodetectors (OPDs) due to their precisely tunable bandgaps, solution processability, flexibility compatibility, and biocompatibility. However, the narrow-bandgap intrinsic characteristics required for NIR response inevitably lead to carrier concentration surge that exponentially increases dark current, while hot carriers undergo phonon scattering relaxation that suppresses carrier collection.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States.
Tuning the exciton fine structure of lead halide perovskites to brighten the dark excitonic ground state is crucial for enhancing their optoelectronic performance. While Rashba splitting is linked to dark-to-light exciton flipping, the specific nature of this phenomenon remains unclear. Here, we systematically studied 18 CsPbBr structures, representing 2D systems of CsPbBr with varying degrees of distortion, using density functional theory (DFT) and the Model-Bethe-Salpeter Equation (m-BSE).
View Article and Find Full Text PDFJ Chem Phys
August 2025
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
Understanding the interplay between network architecture and exciton dynamics is crucial for optimizing the performance of open quantum systems, particularly in excitonic quantum batteries (QBs). This study explores how variations in network topology influence exciton storage and transport in QBs modeled as open quantum networks with exchange symmetries embedded in their structural design. We simulate exciton dynamics in systems with different architectures-including single-ring and stacked ring configurations of varying sizes-initialized in one of their symmetry-protected dark states.
View Article and Find Full Text PDF