Transition metal dichalcogenides (TMDs) with rhombohedral (3R) stacking order are excellent platforms to realize multiferroelectricity. In this work, we demonstrate the electrical switching of ferroelectric orders in bilayer, trilayer, and tetralayer 3R-MoS dual-gate devices by examining their reflection and photoluminescence (PL) responses under sweeping out-of-plane electric fields. We observe sharp shifts in excitonic spectra at different critical fields with pronounced hysteresis.
View Article and Find Full Text PDFTwo-dimensional (2D) materials serve as exceptional platforms for controlled second-harmonic generation (SHG). Current approaches to SHG control often depend on nonresonant conditions or symmetry breaking via single-gate control. Here, we employ dual-gate bilayer WSe to demonstrate an SHG enhancement concept that leverages strong exciton resonance and a layer-dependent exciton-polaron effect.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Photocurrent in quantum materials is often collected at global contacts far away from the initial photoexcitation. This collection process is highly nonlocal. It involves an intricate spatial pattern of photocurrent flow (streamlines) away from its primary photoexcitation that depends sensitively on the configuration of current collecting contacts as well as the spatial nonuniformity and tensor structure of conductivity.
View Article and Find Full Text PDFStack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe/MoSe heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems.
View Article and Find Full Text PDFWe report the observation of QΓ intervalley exciton in bilayer WSe devices encapsulated by boron nitride. The QΓ exciton resides at ∼18 meV below the QK exciton. The QΓ and QK excitons exhibit different Stark shifts under an out-of-plane electric field due to their different interlayer dipole moments.
View Article and Find Full Text PDFWe have measured the reflectance contrast, photoluminescence, and valley polarization of a WSe_{2}/WS_{2} heterobilayer moiré superlattice at gate-tunable charge density. We observe absorption modulation of three intralayer moiré excitons at filling factors ν=1/3 and 2/3. We also observe luminescence modulation of interlayer trions at around a dozen fractional filling factors, including ν=-3/2, 1/4, 1/3, 2/5, 2/3, 6/7, 5/3.
View Article and Find Full Text PDFMoiré superlattices formed by van der Waals materials can support a wide range of electronic phases, including Mott insulators, superconductors and generalized Wigner crystals. When excitons are confined by a moiré superlattice, a new class of exciton emerges, which holds promise for realizing artificial excitonic crystals and quantum optical effects. When such moiré excitons are coupled to charge carriers, correlated states may arise.
View Article and Find Full Text PDFPhotosynthesis achieves near unity light-harvesting quantum efficiency yet it remains unknown whether there exists a fundamental organizing principle giving rise to robust light harvesting in the presence of dynamic light conditions and noisy physiological environments. Here, we present a noise-canceling network model that relates noisy physiological conditions, power conversion efficiency, and the resulting absorption spectra of photosynthetic organisms. Using light conditions in full solar exposure, light filtered by oxygenic phototrophs, and light filtered under seawater, we derived optimal absorption characteristics for efficient solar power conversion.
View Article and Find Full Text PDFExcitons and trions (or exciton polarons) in transition metal dichalcogenides (TMDs) are known to decay predominantly through intravalley transitions. Electron-hole recombination across different valleys can also play a significant role in the excitonic dynamics, but intervalley transitions are rarely observed in monolayer TMDs, because they violate the conservation of momentum. Here we reveal the intervalley recombination of dark excitons and trions through more than one path in monolayer WSe_{2}.
View Article and Find Full Text PDFQuantum devices made from van der Waals (vdW) heterostructures of two dimensional (2D) materials may herald a new frontier in designer materials that exhibit novel electronic properties and unusual electronic phases. However, due to the complexity of layered atomic structures and the physics that emerges, experimental realization of devices with tailored physical properties will require comprehensive measurements across a large domain of material and device parameters. Such multi-parameter measurements require new strategies that combine data-intensive techniques-often applied in astronomy and high energy physics-with the experimental tools of solid state physics and materials science.
View Article and Find Full Text PDFWhen the Fermi level is aligned with the Dirac point of graphene, reduced charge screening greatly enhances electron-electron scattering. In an optically excited system, the kinematics of electron-electron scattering in Dirac fermions is predicted to give rise to novel optoelectronic phenomena. In this paper, we report on the observation of an intrinsic photocurrent in graphene, which occurs in a different parameter regime from all the previously observed photothermoelectric or photovoltaic photocurrents in graphene: the photocurrent emerges exclusively at the charge neutrality point, requiring no finite doping.
View Article and Find Full Text PDFIn recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques-for example in the unique colouring of butterfly wings-to manipulate photons as they propagate through nanoscale periodic assemblies.
View Article and Find Full Text PDFStrong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected.
View Article and Find Full Text PDFPhys Rev Lett
December 2016
We investigate valley dynamics associated with trions in monolayer tungsten diselenide (WSe_{2}) using polarization resolved two-color pump-probe spectroscopy. When tuning the pump and probe energy across the trion resonance, distinct trion valley polarization dynamics are observed as a function of energy and attributed to the intravalley and intervalley trions in monolayer WSe_{2}. We observe no decay of a near-unity valley polarization associated with the intravalley trions during ∼ 25 ps, while the valley polarization of the intervalley trions exhibits a fast decay of ∼4 ps.
View Article and Find Full Text PDFManipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light energy harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light-harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we compare the theoretical minimum energy fluctuations in nanoscale quantum heat engine photocells that incorporate one or two photon-absorbing channels and show that fluctuations are naturally suppressed in the two-channel photocell.
View Article and Find Full Text PDFIn this work, we leverage graphene's unique tunable Seebeck coefficient for the demonstration of a graphene-based thermal imaging system. By integrating graphene based photothermo-electric detectors with micromachined silicon nitride membranes, we are able to achieve room temperature responsivities on the order of ~7-9 V/W (at λ = 10.6 μm), with a time constant of ~23 ms.
View Article and Find Full Text PDFWe report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T(*)), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures (T < T(*)), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature.
View Article and Find Full Text PDFWe explore the photoresponse of an ambipolar graphene infrared thermocouple at photon energies close to or below monolayer graphene's optical phonon energy and electrostatically accessible Fermi energy levels. The ambipolar graphene infrared thermocouple consists of monolayer graphene supported by an infrared absorbing material, controlled by two independent electrostatic gates embedded below the absorber. Using a scanning infrared laser microscope, we characterize these devices as a function of carrier type and carrier density difference controlled at the junction between the two electrostatic gates.
View Article and Find Full Text PDFIn semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons.
View Article and Find Full Text PDFUltrafast photocurrent measurements are performed on individual carbon nanotube p-i-n photodiodes. The photocurrent response to subpicosecond pulses separated by a variable time delay Δt shows strong photocurrent suppression when two pulses overlap (Δt=0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias V(SD), and is twice as long for photon energy above the second subband E22 as compared to lower energy.
View Article and Find Full Text PDFWe report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse, provide strong evidence that nonlocal hot carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene.
View Article and Find Full Text PDFThe appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone, and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a cylindrical lattice of repulsive particles can reproduce phyllotaxis under the (unproved) assumption that minimum of energy would be achieved by two-dimensional Bravais lattices. Here we provide experimental and numerical evidence that the Phyllotactic lattice is actually a ground state.
View Article and Find Full Text PDFWe investigate the optoelectronic response of a graphene single-bilayer interface junction using photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gate voltage. These measurements show that the generation of PC is by a photothermoelectric effect.
View Article and Find Full Text PDFWe observed highly efficient generation of electron-hole pairs due to impact excitation in single-walled carbon nanotube p-n junction photodiodes. Optical excitation into the second electronic subband E22 leads to striking photocurrent steps in the device I-V(SD) characteristics that occur at voltage intervals of the band-gap energy E(GAP)/e. Spatially and spectrally resolved photocurrent combined with temperature-dependent studies suggest that these steps result from efficient generation of multiple electron-hole pairs from a single hot E22 carrier.
View Article and Find Full Text PDF