98%
921
2 minutes
20
Using smart nanopesticide formulations based on nanomaterials can offer promising potential applications for decreasing pesticide residues and their effects on human health and the environment. In this study, a novel nanoformulation (NF) of thiamethoxam (TMX) was fabricated using the solvent evaporation method through loading TMX on cellulose nanocrystals (CNCs) as the carrier. The synthesized TMX-CNCs was investigated through different techniques, such as Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The results revealed that the loading efficiency and entrapment efficiency were 18.7% and 83.7 ± 1.8% for TMX, respectively. The prepared nanoformulation (TMX-CNCs) had a width of 7-14 nm and a length of 85-214 nm with a zeta potential of -23.6 ± 0.3 mV. The drug release behavior study exhibited that the release of TMX from TMX-loaded CNCs was good and sustained. Furthermore, bioassay results showed that the insecticidal activity of TMX-CNCs against was significantly superior to that of the technical and commercial formulation, as indicated by the lower LC value. The results indicate that the TMX nanoformulation has great potential for application in agriculture for pest control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221987 | PMC |
http://dx.doi.org/10.3390/nano10040788 | DOI Listing |
Anal Chim Acta
November 2025
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:
Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Laboratorio de Biomateriales y Bioprocesos, Av. Belgrano y Pasaje Caseros, SM de Tucumán, 4000, Tucumán. R, Argentina; Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia. Laboratorio de Bioproceso
This study explores the use of plant-derived polysaccharides to develop bio-based films for food-packaging applications. A film-forming solution composed of Prosopis nigra biopolymer (PN-B), carboxymethyl cellulose (CMC), and glycerol was optimized by central composite design (CCD), resulting in two formulations: P1 and P11. The films were subsequently functionalized with silver nanoparticles (AgNPs) synthesized via chemical and biological routes.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia. Electronic address:
A novel smart textile swab was developed as an analytical tool for the onsite evaluation of biochemical changes in sweat toward potential applications in healthcare monitoring and drug testing. Betalain (BTA) was extracted from beetroot (Beta vulgaris L.) using a simple procedure.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:
Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Chemical Science and Technologies, University of Tor Vergata, Via della Ricerca Scientifica, 000133 Rome, Italy. Electronic address:
Two forms of nanocellulose-based sensing materials were developed for heavy metal ions (HMIs) detection: all-solid-state and suspension. In these materials, cellulose nanofibers (CNF), isolated from cellulose bleached pulp via homogenization, were employed as a support matrix. For all-solid-state optodes development free-base 5,10,15,20-tetraphenylporphyrin (TPP) and zinc-porphyrin derivative (ZnPC) were deposited on CNF support.
View Article and Find Full Text PDF