Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ca/calmodulin-dependent protein kinase kinase (CaMKK) activates particular multifunctional kinases, including CaMKI, CaMKIV, and 5'AMP-activated protein kinase (AMPK), resulting in the regulation of various Ca-dependent cellular processes, including neuronal, metabolic, and pathophysiological pathways. We developed and characterized a novel pan-CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7-benzo[de]benzo[4,5]imidazo[2,1-]isoquinolin-7-one) derived from STO-609 (7-benzimidazo[2,1-]benz[de]isoquinoline-7-one-3-carboxylic acid), and an inactive analogue (TIM-062) as molecular probes for the analysis of CaMKK-mediated cellular responses. Unlike STO-609, TIM-063 had an inhibitory activity against CaMKK isoforms (CaMKKα and CaMKKβ) with a similar potency ( = 0.35 μM for CaMKKα, and = 0.2 μM for CaMKKβ) . Two TIM-063 analogues lacking a nitro group (TIM-062) or a hydroxy group (TIM-064) completely impaired CaMKK inhibitory activities, indicating that both substituents are necessary for the CaMKK inhibitory activity of TIM-063. Enzymatic analysis revealed that TIM-063 is an ATP-competitive inhibitor that directly targets the catalytic domain of CaMKK, similar to STO-609. TIM-063 suppressed the ionomycin-induced phosphorylation of exogenously expressed CaMKI, CaMKIV, and endogenous AMPKα in HeLa cells with an IC of ∼0.3 μM, and it suppressed CaMKK isoform-mediated CaMKIV phosphorylation in transfected COS-7 cells. Thus, TIM-063, but not the inactive analogue (TIM-062), displayed cell permeability and the ability to inhibit CaMKK activity in cells. Taken together, these results indicate that TIM-063 could be a useful tool for the precise analysis of CaMKK-mediated signaling pathways and may be a promising lead compound for the development of therapeutic agents for the treatment of CaMKK-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.0c00149DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
molecular probes
8
ca/calmodulin-dependent protein
8
kinase kinase
8
derived sto-609
8
camki camkiv
8
tim-063
8
inactive analogue
8
analogue tim-062
8
analysis camkk-mediated
8

Similar Publications

Deletion of the SHORT Syndrome Gene Prkce Results in Brain Atrophy and Cognitive and Motor Behavior Deficits in Mice.

Neurosci Bull

September 2025

Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.

The neurological manifestations of SHORT syndrome include intrauterine growth restriction, microcephaly, intellectual disability, hearing loss, and speech delay. SHORT syndrome is generally believed to be caused by PIK3R1 gene mutations and impaired PI3K-AKT activation. Recently, a clinical case report described a SHORT syndrome with a novel mutant in PRKCE gene encoding protein kinase Cε (PKCε).

View Article and Find Full Text PDF

In oxaliplatin-resistant gastric cancer (GC), multi-omics profiling combined with organoid libraries reveals altered metabolic pathways associated with chemoresistance. We identify a novel lactylation modification at K115 of Poly(RC)-binding protein 2 (PCBP2K115la), which confers functional oxaliplatin resistance. Mechanistic studies demonstrate that the long non-coding RNA BASP1-AS1 assembles a complex containing Unc-51 Like Autophagy Activating Kinase 1 (ULK1) and lactate dehydrogenase A (LDHA), thereby activating LDHA enzymatic activity to increase lactate production.

View Article and Find Full Text PDF

Background: Excessive oxidative stress is well known to participate in the pathogenesis of hypertension. A major regulator of oxidative stress is the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2). However, the role of Nrf2 in the pathogenesis of hypertension is not completely understood, especially at the endothelial cell level.

View Article and Find Full Text PDF

HCN2 promotes neurodevelopmental and synaptic function repair through the CaMKII/CREB pathway to alleviate general anesthesia-induced cognitive impairment.

Cell Signal

September 2025

Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:

Repeated exposure to gestational general anesthesia during pregnancy has been associated with neurodevelopmental damage and cognitive and social dysfunction in offspring. This study investigates the underlying mechanisms and therapeutic strategies for mitigating these effects. Behavioral tests revealed significant impairments in cognitive, social, and spatial learning abilities in the offspring of general anesthesia-treated mice, alongside delayed eye-opening, reduced body weight, and neuronal damage.

View Article and Find Full Text PDF

Parkinson's disease is a prevalent neurodegenerative disease, in which genetic mutations in many genes play an important role in its pathogenesis. Among these, a mutation in the PINK1 gene, a mitochondrial-targeted serine/threonine putative kinase 1 that protects cells from stress-induced mitochondrial dysfunction, is implicated in autosomal recessive Parkinsonism. However, the exact etiology is not well understood.

View Article and Find Full Text PDF