98%
921
2 minutes
20
Parkinson's disease is a prevalent neurodegenerative disease, in which genetic mutations in many genes play an important role in its pathogenesis. Among these, a mutation in the PINK1 gene, a mitochondrial-targeted serine/threonine putative kinase 1 that protects cells from stress-induced mitochondrial dysfunction, is implicated in autosomal recessive Parkinsonism. However, the exact etiology is not well understood. Therefore, this study aimed to identify the most damaging non-synonymous single-nucleotide polymorphisms (nsSNPs) distributed in the kinase domain of the PINK1 gene and their structural and functional alterations using a range of bioinformatics and deep learning tools. Next, to find the possible impact of these mutations on PINK1 interactions and binding affinities, a protein-protein interaction and molecular docking analysis were conducted. Finally, molecular dynamics (MD) simulations were performed to observe the stability and dynamic behaviour of the pathogenic SNPs on the PINK1 protein over time. Our integrated bioinformatics and deep learning approaches predicted 5 SNPs (C166R, E240K, D362N, D362Y, and C388R) as high-risk candidates for disrupting PINK1 structure and function. In conclusion, we propose that the pathogenicity of these variants may provide an important clue to understanding the mechanism by which pathogenic nsSNPs contribute to PD, thereby enhancing future diagnostic value for the disease and serving as potential targets for new drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2025.08.014 | DOI Listing |
J Food Sci
September 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.
Primary agricultural products are closely related to our daily lives, as they serve not only as raw materials for food processing but also as products directly purchased by consumers. These products face the issue of freshness decline and spoilage during both production and consumption. Freshness degradation induces sensory deterioration and nutritional loss and promotes harmful substance accumulation, causing gastrointestinal issues or even endangering life.
View Article and Find Full Text PDFAcad Radiol
September 2025
Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China (H.S., Q.W., S.F., H.W.). Electronic address:
Rationale And Objectives: This study systematically evaluates the diagnostic performance of artificial intelligence (AI)-driven and conventional radiomics models in detecting muscle-invasive bladder cancer (MIBC) through meta-analytical approaches. Furthermore, it investigates their potential synergistic value with the Vesical Imaging-Reporting and Data System (VI-RADS) and assesses clinical translation prospects.
Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Comput Biol Med
August 2025
The First People Hospital of Foshan, Foshan City CN, China. Electronic address:
Brain Tumor Segmentation (BTS) is crucial for accurate diagnosis and treatment planning, but existing CNN and Transformer-based methods often struggle with feature fusion and limited training data. While recent large-scale vision models like Segment Anything Model (SAM) and CLIP offer potential, SAM is trained on natural images, lacking medical domain knowledge, and its decoder struggles with accurate tumor segmentation. To address these challenges, we propose the Medical SAM-Clip Grafting Network (MSCG), which introduces a novel SC-grafting module.
View Article and Find Full Text PDFMod Pathol
September 2025
School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. Electronic address:
Deep learning (DL) has significantly improved the diagnostic accuracy and efficiency of cytopathologists. However, current DL-assisted reading modes have yet to be fully evaluated, and there is limited evidence regarding cytopathologists' preferences and experiences. This study employs a randomized, controlled, four-way crossover design to assess the effectiveness of four different reading modes in cervical cytopathology readings.
View Article and Find Full Text PDFAnal Biochem
September 2025
School of Computer Science and Engineering, Southeast University, Nanjing 210000, China.
In the complex process of gene expression and regulation, RNA-binding proteins occupy a pivotal position for RNA. Accurate prediction of RNA-protein binding sites can help researchers better understand RNA-binding proteins and their related mechanisms. And prediction techniques based on machine learning algorithms are both cost-effective and efficient in identifying these binding sites.
View Article and Find Full Text PDF