98%
921
2 minutes
20
An increasing number of studies have found that use of traditional anesthetics may lead to cognitive impairment of the immature brain. Our previous studies verified that cyclin-dependent kinase 5 (CDK5) plays a role in sevoflurane-induced cognitive dysfunction. Autophagy was shown to protect against anesthesia-induced nerve injury. Therefore, the current study aimed to ascertain if autophagy participates in anesthesia-induced neurotoxicity. In this study, primary hippocampal neurons were isolated and utilized for experiments in vitro. We also performed in vivo experiments with 6-day-old wild-type mice treated with or without roscovitine (Rosc, a CDK5 inhibitor) or 3-methyladenine (3-Ma, an autophagy inhibitor) after exposure to sevoflurane. We used the Morris water maze to analyze cognitive function. Immunohistochemical staining was used to assess pathologic changes in the hippocampus. The results showed that suppressing CDK5 reversed sevoflurane-induced nerve cell apoptosis both in vivo and in vitro and demonstrated that inhibits CDK5 activation promoted Sirtuin 1 (Sirt1) expression, which functions importantly in induced autophagy activation. Suppression of Sirt1 expression inhibited the protective effect of Rosc on sevoflurane-induced nerve injury by inhibiting autophagy activation. Our in vivo experiments also found that pretreatment with 3-Ma attenuated the protective effect of Rosc on sevoflurane-induced nerve injury and cognitive dysfunction. We conclude that inhibits CDK5 activation restored sevoflurane-induced cognitive dysfunction by promoting Sirt1-mediated autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448766 | PMC |
http://dx.doi.org/10.1007/s10571-020-00786-6 | DOI Listing |
Brain Behav
September 2025
Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.
Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.
Schizophr Bull
September 2025
Department of Psychiatry, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
Background And Hypothesis: Schizophrenia is linked to hippocampal dysfunction and microglial inflammatory activation. Our prior clinical findings revealed significantly reduced transient receptor potential vanilloid 1 (TRPV1) expression in both first-episode and recurrent schizophrenia patients, with levels inversely correlating with symptom severity, implicating TRPV1 dysfunction in disease progression. Preclinical maternal separation (MS) models recapitulate schizophrenia-like behavioral and synaptic deficits, paralleled by hippocampal microglial TRPV1 downregulation.
View Article and Find Full Text PDFJ Am Acad Audiol
September 2025
Given the evidence of cognitive deficits in individuals with vestibular dysfunction, reduced cognitive resources may impact the effort required to process auditory information, particularly in adverse listening conditions. Although existing literature suggests impaired performance on cognitive tasks in vestibular disorders in general, research in this area specific to patients with vestibular migraine is limited. This article aims to investigate working memory, auditory attention, and listening effort among individuals with vestibular migraine.
View Article and Find Full Text PDFMol Ther
September 2025
Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu
Brain aging is a major risk factor for cognitive decline and neurodegenerative diseases, driven by synaptic loss, reduced synaptic function, and inflammation. However, the molecular mechanisms underlying these dysfunctions remain unclear. Here, we conducted comparative transcriptomic analyses of brain regions (cortex and hippocampus) and kidney tissues, a peripheral organ with documented age-related dysfunction.
View Article and Find Full Text PDFNature
September 2025
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.
View Article and Find Full Text PDF