The Chromosome-Based Rubber Tree Genome Provides New Insights into Spurge Genome Evolution and Rubber Biosynthesis.

Mol Plant

Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China. Electronic address: lg

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rubber tree, Hevea brasiliensis, produces natural rubber that serves as an essential industrial raw material. Here, we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing (SMRT) and Hi-C technologies to anchor the ∼1.47-Gb genome assembly into 18 pseudochromosomes. The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution, since the common paleopolyploid event occurred before the split of Hevea and Manihot. We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years, leading to the massive expansion by ∼65.88% (∼970 Mbp) of the whole rubber tree genome since the divergence from Manihot. We identify large-scale expansion of genes associated with whole rubber biosynthesis processes, such as basal metabolic processes, ethylene biosynthesis, and the activation of polysaccharide and glycoprotein lectin, which are important properties for latex production. A map of genomic variation between the cultivated and wild rubber trees was obtained, which contains ∼15.7 million high-quality single-nucleotide polymorphisms. We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree, some of which are involved in rubber biosynthesis. This genome assembly represents key resources for future rubber tree research and breeding, providing novel targets for improving plant biotic and abiotic tolerance and rubber production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2019.10.017DOI Listing

Publication Analysis

Top Keywords

rubber tree
24
rubber
11
tree genome
8
rubber biosynthesis
8
genome assembly
8
cultivated wild
8
wild rubber
8
rubber trees
8
genome
7
tree
6

Similar Publications

In western North America, 3 pest wireworms in the genus Limonius co-occur on farmland, and the click beetle adult males respond to the same single-component sex attractant, limoniic acid. While divergence in seasonal occurrence may provide a means of separating sexual communication for Limonius canus (LeConte) and Limonius californicus (Mann.), both species overlap temporally with Limonius infuscatus (Mots.

View Article and Find Full Text PDF

Brown root rot, caused by Phellinus noxius, is a major threat to rubber tree cultivation, resulting in substantial economic losses. Traditional control methods, such as root irrigation with fungicides, are labor-intensive, water-consuming, and inefficient, particularly in regions with limited water resources. This study introduces fluorescent mesoporous silica nanoparticles (FL-MSNs) as a novel delivery platform for tebuconazole to target P.

View Article and Find Full Text PDF

CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species.

Plant Cell Environ

September 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry

CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.

View Article and Find Full Text PDF

Soil green algae play a crucial role in terrestrial ecosystems and enhance soil health. However, research on algal diversity and ecology in crop field soils, particularly in untilled perennial tree plantations, is scarce, and the factors influencing algal contributions to soil health and fertility management are not well understood. Therefore, an extensive study was conducted on the ecology and diversity of green algae in rubber crop plantations in South India, spanning diverse agroclimatic zones, soil orders, soil series, and seasons.

View Article and Find Full Text PDF

Characterization of mitogenome revealed a remarkable evolution in genome size and composition of protein-coding genes.

Front Plant Sci

August 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China.

Red root disease in rubber trees, caused by , is a prevalent and severe soil-borne disease in rubber tree cultivation areas. The pathogen exhibits complex infections, with multiple transmission pathways, making the disease highly concealed and difficult to diagnose in its early stages. As a result, prevention and control are challenging, posing a serious threat to rubber production.

View Article and Find Full Text PDF