CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species.

Plant Cell Environ

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms. This review presents the first in-depth, critical re-evaluation of recent advancements in RNP-mediated editing in woody plants, highlighting these obstacles that warrant focused attention. Unlike plasmid-based CRISPR systems, RNP editing utilises Cas9/Cas12a protein-guide RNA complexes without integrating foreign DNA. This enables a DNA-free editing strategy that simplifies regulatory approval and minimises off-target effects due to the transient presence and rapid degradation of RNPs within plant cells. While PEG-mediated protoplast transfection and particle bombardment remain the primary reported methods for RNP delivery in trees, we evaluate promising alternative strategies such as lipofection, electroporation, cell-penetrating peptides and nanoparticle-based systems for targeted RNP delivery. Despite their promise, these advanced methods remain largely untested in woody species. Finally, we outline future research directions, including the development of tree-specific RNP delivery systems and regeneration protocols to enhance efficiency and minimise cytotoxicity. These innovations are essential for unlocking the full potential of RNP-mediated genome editing in long-lived tree species. This review provides a focused and timely roadmap for expanding the application of RNP technology across diverse woody plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.70176DOI Listing

Publication Analysis

Top Keywords

genome editing
12
tree species
12
woody plants
12
rnp delivery
12
future directions
8
rnp-mediated genome
8
woody species
8
editing
6
species
6
plants
5

Similar Publications

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

Wheat, a significant source of protein, can also induce various wheat-related allergic reactions (WRARs). Statistical data show significant spatiotemporal and geographical variations in the prevalence of WRARs. Studies reveal that hexaploid wheat exhibits notably higher allergenicity.

View Article and Find Full Text PDF

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF