98%
921
2 minutes
20
A droplet-based microfluidic synthesis approach for preparation of ficin capped gold nano clusters (AuNCs) was developed. Well dispersed AuNCs could be procured within 8 min. Upon excitation wavelength at 340 nm, the resultant AuNCs exhibited a strong blue fluorescence with the maximum emission at 450 nm. Due to the aggregation-induced "turn-off" fluorescence mechanism, the synthesized AuNCs as a fluorescent probe displayed high sensitivity and good selectivity for sensing ferric ions. The relative fluorescence intensity versus ferric ions concentration yielded a good linear calibration in the range of 10.0-1000.0 μM (R = 0.998) and the limit of detection was 4.1 μM. Moreover, the possible mechanism for abated fluorescence intensity of AuNCs by adding ferric ions was discussed briefly. Further, the as-prepared fluorescent AuNCs was successfully applied for the detection of serum ferric ions. The results indicated that the droplet-based microfluidic synthesis system could provide a new way for the rapid preparation of AuNCs with good polydispersity and have potential as the sensing probes for the analysis of ferric ions in real biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.03.077 | DOI Listing |
Int J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
Int J Nanomedicine
September 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Purpose: This study aimed to develop a composite nanozyme system (Au/PB-Ce6-HA) based on gold nanoparticles (AuNPs) and Prussian blue nanoparticles (PBNPs) to combat tumor hypoxia and insufficient endogenous hydrogen peroxide (HO) deficiency, thus enhancing the efficacy of sonodynamic therapy (SDT) and starvation therapy for liver cancer.
Methods: The Au/PB-Ce6-HA system was constructed by in situ embedding AuNPs on PBNPs, loading the sonosensitizer Chlorin e6 (Ce6), and surface-coating with thiolated hyaluronic acid (HA-SH). The system was evaluated both in vitro and in vivo to assess its ability to catalyze glucose to generate HO, decompose HO to produce oxygen, and generate highly toxic reactive oxygen species (ROS) under ultrasound irradiation.
Water Res
August 2025
School of Materials and Energy, University of Electronic Science and Technology of China, 610054 Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China. Electronic address:
The scalable fabrication of high performance dyes desalination loose nanofiltration (LNF) membrane through facile thermal annealing remains challenging due to the susceptible pore collapse. Herein, we have developed a metal ion mediated sub-Tg thermal crosslinking protocol, which can convert the phase inverted reactive polymeric ultrafiltration substrate into LNF membrane showing high permselectivity as well as resistance to both extremely acid and alkaline solution. The original ultrafiltration substrate was composed of scalable-produced reactive polyarylene ether amidoxime (PEA) that was pre-crosslinked with ferric ions.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2025
Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
To investigate the antibacterial effect, mechanism, and cytotoxicity of Prussian blue/Cerium dioxide (PB/CeO) nanoparticles against Enterococcus faecalis (E. faecalis) and biofilm. PB/CeO nanoparticles were synthesized and characterized.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2025
Department of Ultrasound, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, Shaanxi, China.
The study aims to explore the methods for preparing nanocomplexes of Prussian blue nanoparticles (PBNPs) with UNO peptide (UNO-PBNPs) and the functions of the nanocomplexes targeting M2-type macrophages . PBNPs were prepared by the hydrothermal synthesis method. Subsequently, the peptide UNO (CSPGAKVRC) targeting the mannose receptor was modified on their surface by a heterobifunctional coupling approach.
View Article and Find Full Text PDF