98%
921
2 minutes
20
Objectives: Deep brain stimulation (DBS) and stereo-electroencephalography (SEEG) electrode implantation are the most important and frequent manipulations in nonhuman primates (NHP) neuromodulation research. However, traditional methods tend to be arduous and inaccurate.
Materials And Methods: Twelve adult male rhesus monkeys were selected for the study, with six subthalamic nucleus (STN) DBS, six anterior nucleus of the thalamus (ANT) DBS and six hippocampus-SEEG (Hippo-SEEG) electrodes implantation. Mean Euclidean errors of entrance and the target were calculated by postoperative image fusion, and the correlation between entrance and target error, as well as the differences among the various manipulations, were analyzed. The accuracy of target was further confirmed by gross anatomy examination. Moreover, the time consumption was recorded.
Results: The mean (±SD) Euclidean errors of the target point and entry point of the three manipulations were STN-DBS: 1.05 ± 0.54 mm and 0.52 ± 0.17 mm; ANT-DBS: 1.12 ± 0.74 mm and 0.58 ± 0.24 mm; and Hippo-SEEG: 2.68 ± 1.03 mm and 1.47 ± 0.63 mm. Significant differences were observed in both target and entry point errors between the DBS and Hippo-SEEG groups, with superior accuracy in the DBS group. The entrance errors had a significantly positive correlation with the target errors in the STN-DBS and Hippo-SEEG groups. Moreover, the time consumption in robotic surgery was much shorter than that in the traditional method, without any severe complications.
Conclusion: The application of robot-assisted lead implantation in NHP neuromodulation research is feasible, accurate, safe, and efficient, and can prospectively be beneficial to neurological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ner.12951 | DOI Listing |
J Cardiovasc Electrophysiol
September 2025
Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
Introduction: Iatrogenic lead perforation is a rare but serious complication of cardiac implantable electronic device (CIED) implantation. Evidence on percutaneous management of subacute or delayed cases remains limited.
Methods: We retrospectively reviewed 38 patients treated for iatrogenic lead perforation between January 2012 and October 2024.
Hum Genet
September 2025
College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.
Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
Electrical deep brain stimulation is effective for epilepsy suppression, but will lead to neural tissue damage and inflammation due to implantation of electrodes and a pulse generator. Transcranial magnetic and transcranial ultrasound stimulation cannot directly generate effective electrical signals in deep brain regions. Here, the use of piezoelectric nanoparticles is proposed as wireless nanostimulators for deep brain electrical stimulation and minimally invasive suppression of epilepsy.
View Article and Find Full Text PDFCureus
August 2025
Department of Orthopaedics, Asklipieio Voulas General Hospital, Athens, GRC.
Postoperative infections following orthopedic fixation can lead to devastating consequences, particularly in patients with comorbidities such as diabetes mellitus. We present a rare case of a 61-year-old female patient with a patella fracture treated with tension band wiring who developed a severe polymicrobial infection resulting in complete destruction of the patellar tendon. Multiple debridements, removal of implants, and prolonged targeted antibiotic therapy were necessary.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
Neurogenic bladder and lower urinary tract (LUT) dysfunctions encompass a wide variety of urinary disorders resulting from nervous system impairments. Unfortunately, conventional treatments are still limited and can have significant complication rates, especially when stent implantations or other surgical procedures are involved. Therefore, there is a critical need to develop novel therapeutic strategies and pharmacological approaches to address these challenging urological conditions.
View Article and Find Full Text PDF