98%
921
2 minutes
20
Over the past decades, urbanization in Arabian Gulf region expands in flood-prone areas at an unprecedented rate. Chronic water stress and potential changes in extreme rainfall attributed to climate change therefore pose unique challenges in planning and designing water management infrastructures. The objective of this study is to develop a framework to integrate climate change variations into intensity-duration-frequency (IDF) curves in Oman. A two-stage downscaling-disaggregation method was applied with rainfall at Tawi-Atair station in Dhofar region. Potential variations of extreme rainfall in future were examined by eight scenarios composed with two general circulation models (GCMs), two representative concentration pathways (RCPs), and two future periods (2040-2059 and 2080-2099). A stochastic weather generator model was used to downscale rainfall output from GCM grid scale to local scale. Downscaled daily data were then disaggregated to hourly and 5-min series by using K-nearest neighbor (K-NN) technique. Annual maximum rainfall extracted from eight future scenarios and also from present climate (baseline period) was used to develop rainfall intensity-frequency relationships for eight durations range from 5 min to 24 h. Results of the K-NN analysis indicate that the optimum window size of 57 days and 181 h is suitable for hourly and 5-min disaggregation models, respectively. Results also predict that the effects of climate change on the rainfall intensity will be more significant on storms with shorter durations and higher return periods. Moving towards the end of the twenty-first century, the return period of extreme rainfall events is likely to decrease due to intensified rainfall events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-019-7385-4 | DOI Listing |
Sci Total Environ
September 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:
Extreme rainfall during the Indian Summer Monsoon (ISM) accounts for approximately 27 % of the total seasonal rainfall. Most of this moisture is transported from the Indian Ocean. Amid ongoing warming of the Indian Ocean, 2023 stood out as one of the warmest monsoon years on record.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:
This study presents the first experimental evidence of biochar (BC) aerosol generation via raindrop impact on amended soils, combining controlled rainfall simulations with year-long field monitoring of atmospheric particulates from a BC-treated plot (2.0 wt%). Microscopic and isotopic analyses confirmed BC incorporation in total suspended particles (TSP), accounting for 15.
View Article and Find Full Text PDFSci Total Environ
September 2025
Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
Urban flooding, exacerbated by climate change and the expansion of impervious surfaces, poses growing risks to sustainable urban development. Enhancing soil infiltration through green infrastructure is a promising nature-based solution, yet its hydrological effectiveness and economic viability under diverse rainfall scenarios remain insufficiently quantified. This study develops an interdisciplinary framework integrating column experiments, physically distributed hydrological modeling, and cost-benefit analysis to assess ceramsite-amended soils for urban flood resilience.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Environmental & Water Resources Engineering, University Teaching Department, Chhattisgarh Swami Vivekanand Technical University Bhilai, Bhilai 491107, Chhattisgarh, India; Department of Civil Engineering, National Institute of Technology Raipur, Raipur 492001, Chhattisgarh, India. Elec
Drought is a natural event, but its frequency and severity are increasingly influenced by human activity and climate change. In the current Anthropocene era, human-induced changes to the hydrological cycle combined with natural climate variability are reshaping how droughts develop and persist. Droughts often result from complex interactions between atmospheric conditions and land surface processes, which affect how water and energy move through the environment.
View Article and Find Full Text PDFEnviron Res
August 2025
Xi'an Water Affairs (Group) Lijiahe Reservoir Management Co., Ltd, Xi'an, 710016, China.
Water-lifting aerators (WLAs) developed by our teams are typically employed to improve water quality via artificial mixing. However, the WLA deactivation following rainfall frequently results in phytoplankton blooms in the reservoirs. The mechanisms by which rainfall events trigger blooms and the sedimentation characteristics of suspended solid (SS) and total phosphorus (TP), associated with WLA reactivation, remain unclear.
View Article and Find Full Text PDF